纺织学报 ›› 2017, Vol. 38 ›› Issue (09): 155-161.doi: 10.13475/j.fzxb.20161100807

• 管理与信息化 • 上一篇    下一篇

应用小波域高斯差分滤波的起球疵点客观评价

  

  • 收稿日期:2016-11-03 修回日期:2017-06-15 出版日期:2017-09-15 发布日期:2017-09-20

Pilling objective evaluation based Gaussian filtering in wavelet domain

  • Received:2016-11-03 Revised:2017-06-15 Online:2017-09-15 Published:2017-09-20

摘要:

受织物背景纹理多样性以及起球疵点特点的影响,传统的图像处理算法难以满足起球疵点自动检测和客观评价需要,为此,提出一种基于小波域的高斯差分滤波起球客观等级新方法。首先,对起球疵点图像进行小波多层分解,实现周期性背景纹理信息与起球信息的分离;然后,选择合适的小波分解子图进行高斯差分滤波,消除噪声以及光照不均等缓变的背景信息,提高起球信息的显著度;在此基础上,根据起球特征设定阈值对起球疵点图像进行分割,并提取起球特征;最后,通过人工神经网络进行起球疵点客观等级评价。试验结果表明,本文方法用于起球疵点客观等级评价是可行且有效的,且具有较强的抗干扰能力。

关键词: 起球, 疵点, 图像, 小波域, 高斯差分滤波, 阈值分割, 客观评价

Abstract:

As the effect of the variety of fabric background textures and the feature of pilling defects, conventional algorithm of image processing is hard to satisfy the automatic detection of pilling defects and the objective evaluating demands. A new way of pilling objective evaluation based on the wavelet-domain of Difference of Gaussian  filter was proposed. First of all, pilling defect image was decomposed into multiple layers by wavelet multi-decomposition to separation periodic background texture and pilling information. Then, the appropriate wavelet decomposition sub-images were chosen to carry on difference of Gaussian filter for eliminating the noise and the background information of slow variation such as uneven illumination, and pilling information was improved significantly; and on this basis, a segmentation threshold was defined to segment these sub-images according to the characteristics of pilling, and the features of pilling form binary image was extracted. Finally, BP artificial neutral network wasused to objective evaluation of pilling grade. The test results show that this method can make an objective evaluation for pilling level effectively, and has strong interference resistance.

Key words: pilling, defect, image, wavelet domain, difference of Gaussian filter, threshold segmentation, objective evaluation

[1] 陆奕辰 王蕾 唐千惠 潘如如 高卫东. 应用图像处理的纱线黑板毛羽量检测与评价[J]. 纺织学报, 2018, 39(08): 144-149.
[2] 王雯雯 高畅 刘基宏. 应用卷积神经网络的细纱断纱锭位识别[J]. 纺织学报, 2018, 39(06): 136-141.
[3] 何晓昀 韦平 张林 邓斌攸 潘云峰 苏真伟. 基于深度学习的籽棉中异性纤维检测方法[J]. 纺织学报, 2018, 39(06): 131-135.
[4] 徐启永 胡峰 王传桐 吴雨川. 改进频率调谐显著算法在疵点图像分割中的应用[J]. 纺织学报, 2018, 39(05): 125-131.
[5] 向忠 何旋 钱淼 胡旭东. 基于边缘和颜色特征的织物印花花型检索[J]. 纺织学报, 2018, 39(05): 137-143.
[6] 王雯雯 刘基宏. 应用优化霍夫变换的细纱断头检测[J]. 纺织学报, 2018, 39(04): 36-41.
[7] 陈丽丽. 精纺毛织物缝纫平整度客观评价方法[J]. 纺织学报, 2018, 39(03): 120-125.
[8] 王传桐 胡峰 徐启永 吴雨川 余联庆. 改进频率调谐显著算法在疵点辨识中的应用[J]. 纺织学报, 2018, 39(03): 154-160.
[9] 袁理 代乔民 付顺林 鄢煜尘. 结合全局与局部多样性特征的色纺纱色度学指标测试与评价[J]. 纺织学报, 2018, 39(02): 157-164.
[10] 吴莹 汪军. 基于K-SVD学习字典的机织物纹理表征及应用[J]. 纺织学报, 2018, 39(02): 165-170.
[11] 牟新刚 蔡逸超 周晓 陈国良. 基于机器视觉的筒子纱缺陷在线检测系统[J]. 纺织学报, 2018, 39(01): 139-145.
[12] 王飞 靳向煜. 应用卷积网络及深度学习理论的羊绒与羊毛鉴别[J]. 纺织学报, 2017, 38(12): 150-156.
[13] 向军 张杰 潘如如 韩要宾 张继东 高卫东 . 采用纹理平滑的印花织物图案轮廓提取[J]. 纺织学报, 2017, 38(11): 162-167.
[14] 陈晓春 张彦彬 彭虎 陈翔 褚乃清. 重叠纤类图像的凹点匹配和分割算法[J]. 纺织学报, 2017, 38(11): 143-149.
[15] 何峰 周亚同 赵翔宇 刘猛 张忠伟. 纹理织物疵点窗口跳步形态学法检测[J]. 纺织学报, 2017, 38(10): 124-131.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!