针对碳纤维预浸料表面缺陷人工检测方法效率低、成本高、实时性差等问题,提出基于机器视觉的碳纤维预浸料表面缺陷自动检测方法。首先,在碳纤维预浸料生产线上,采用2台高分辨率线扫描相机快速连续采集图像,从中随机选择带有缺陷的图像1 000张;其次,基于大气光散射模型对图像进行去雾增强处理,以消除白色树脂的干扰;然后,改进具有19个卷积层和5个最大值池化层的YOLOv2目标检测算法,用于缺陷的检测;最后,对预处理后的图像进行网络训练提取图像特征,识别图像目标,并对训练好的网络进行实验验证。结果表明:该方法在复杂的工业环境下,具有较高的识别精度和鲁棒性,识别成功率达到94%以上,且每张图像的检测时间不超过 0.1 s,可满足工业生产中精度和实时性要求。