JOURNAL OF TEXTILE RESEARCH ›› 2017, Vol. 38 ›› Issue (02): 7-13.doi: 10.13475/j.fzxb.20161000807
Previous Articles Next Articles
Received:
Revised:
Online:
Published:
Abstract:
In order to obtain higher strength sodium alginate/antarctic krill protein (SA/AKP) composite fiber, a series of SA/AKP/PVA composite fibers were prepared from blend PVA by wet spinning. The hydrogen bonds of SA/AKP composite fiber was analyzed by Fourier transform infrared spectroscopy (FT-IR). The FT-IR test results show that the existence of intermolecular and intramolecular hydrogen bonds in SA/AKP system. Moreover, with the increase of the PVA content, the free hydroxyl groups of the SA/AKP/PVA composite fibers are from 1.2% to 3.6%, as the same time, the intermolecular hydrogen bond are from 57.8% to 54.8%, however, no change exists in the number of intramolecular hydrogen. SEM image result show that the surface grooves of SA/AKP/PVA composite fibers become thin and distribute uniformly. XRD results demonstrate that the composite fibers have lower degree of crystallization with PVA content increasing. With the increase of PVA content, the mechanical properties of SA/AKP/PVA composite fiber first increased and then decreased. Moreover, when PVA content is 3.5%, mechanical properties reached the maximum value of 2.43cN/dtex.
Key words: antarctic krill protein, sodium alginate, wet spinning, polyvinyl alcohol, composite fiber
0 / / Recommend
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
URL: http://www.fzxb.org.cn/EN/10.13475/j.fzxb.20161000807
http://www.fzxb.org.cn/EN/Y2017/V38/I02/7
Cited