Journal of Textile Research ›› 2019, Vol. 40 ›› Issue (04): 72-76.doi: 10.13475/j.fzxb.20170602605

• Dyeing and Finishig & Chemicals • Previous Articles     Next Articles

Softness treatment of ramie fibers by N-methyl-2-pyrrolidone

LI Mengzhen1, ZHANG Bin1,2(), YU Chongwen1,2   

  1. 1. College of Textiles, Donghua University, Shanghai 201620, China
    2. Key Laboratory of Textile Science &Technology, Ministry of Education, Donghua University, Shanghai 201620, China
  • Received:2017-06-08 Revised:2018-12-23 Online:2019-04-15 Published:2019-04-16
  • Contact: ZHANG Bin E-mail:zhangbin@dhu.edu.cn

Abstract:

In order to improve the softness of ramie fibers, N-methyl-2-pyrrolidone(NMP)was used to treat them. The effects of NMP mass fraction, time and temperature on the mechanical properties and softness of ramie fibers were studied. Meanwhile, the ramie fibers were characterized by X-ray diffractometer, infrared spectrometer and scanning electron microscope. Results show that when the NMP mass fraction, treatment time or temperature increases, the elongation of ramie fibers increases, and the tensile strength decreases. When the NMP mass fraction or the time increases, the twisting number of ramie fiber increases first and then decreases. When temperature increases, the twisting number increases quickly and then keeps stable. The optimum treatment conditions are NMP mass fraction of 15%, time of 60 min and temperature of 80 ℃, the crystallinity of treated ramie fibers decreases from 80.37% to 70.19%, but the chemical groups remain unchanged, and cracks appear along the vertical lines on the surface of ramie fibers.

Key words: ramie fiber, N-methyl-2-pyrrolidone, softness treatment, softness, crystallinity

CLC Number: 

  • TS102.2

Fig.1

Effect of NMP mass fraction on tensile properties(a) and softness (b) of ramie fiber"

Fig.2

Effect of treatment time on tensile properties (a) and softness(b) of ramie fiber"

Fig.3

Effect of treatment temperature on tensile properties(a) and softness(b) of ramie fiber"

Fig.4

X-ray diffraction spectra of ramie fibers before and after treatment"

Fig.5

Infrared spectrum of ramie fibers before and after treatment"

Fig.6

SEM images of ramie fibers before(a) and after(b) treatment(×1 500)"

[1] 刘立军, 王辉, 彭定祥. 苎麻产量和品质影响因素研究进展[J]. 中国麻业科学, 2010,32(5):275-281.
LIU Lijun, WANG Hui, PENG Dingxiang. Progress of study on related factors for yield and quality of ramie in China[J]. Plant Fiber Science in China, 2010,32(5):275-281.
[2] 张明明, 张斌. 苎麻纤维柔软改性研究进展[J]. 上海纺织科技, 2015,43(4):1-4.
ZHANG Mingming, ZHANG Bin. The research progress of soft modification of ramie fiber[J]. Shanghai Textile Science & Technology, 2015,43(4):1-4.
[3] 徐海燕. 国内苎麻纤维化学改性现状研究[J]. 河南工程学院学报(自然科学版), 2012,24(2):20-24.
XU Haiyan. A review: chemical modification on ramie fiber in China[J]. Journal of Henan Institution of Engineering(Natural Science Edition), 2012,24(2):20-24.
[4] 岳军, 熊立堃, 苏立炜, 等. 液固相法纤维素氨基甲酸酯的合成与表征[J]. 高分子材料科学与工程, 2015,31(11):44-49.
YUE Jun, XIONG Likun, SU Liwei, et al. Synjournal and characterization of cellulose carbamate by liquid-solid phase[J]. Polymer Materials Science and Engineering, 2015,31(11):44-49.
[5] 王革辉, 王芳, 赵涛. 纤维素酶处理对高支纯苎麻织物性能的影响[J]. 纺织学报, 2010,31(9):45-48.
WANG Gehui, WANG Fang, ZHAO Tao. Effects of enzymatic treatment on properties of high count ramie fiber[J]. Journal of Textile Research, 2010,31(9):45-48.
[6] 喻红芹, 张琦, 李虹, 等. 苎麻纤维改性方法的对比分析[J]. 河南工程学院学报(自然科学版), 2015,27(3):1-4.
YU Hongqin, ZHANG Qi, LI Hong, et al. Comparison of modification methods of ramie fiber[J]. Journal of Henan Insititution of Engineering (Natural Science Edition), 2015,27(3):1-4.
[7] 张华, 冯家好, 李俊. 液氨处理对苎麻织物结构和性能的影响[J]. 印染, 2008 (7):5-8.
ZHANG Hua, FENG Jiahao, LI Jun. Effect of liquid ammonia and caustic mercerization on structures and properties of ramie fiber[J]. China Dyeing & Finishing, 2008 (7):5-8.
[8] 胡仁志, 张波兰, 张永金, 等. 离子液体改性苎麻纤维性质研究[J]. 武汉科技学院学报, 2004,17(5):25-28.
HU Renzhi, ZHANG Bolan, ZHANG Yongjin, et al. Study on the properties of ramie fiber modified with ionic liquid[J]. Journal of Wuhan University of Science and Engineering, 2004,17(5):25-28.
[9] 张明明, 张斌, 郁崇文. N-甲基吗啉-N-氧化物处理苎麻纤维工艺的优化[J]. 纺织学报, 2015,36(12):64-68.
ZHANG Mingming, ZHANG Bin, YU Chongwen. Optimizing of process for treating ramie fiber by N-methylmorpholine-N-oxide[J]. Journal of Textile Research, 2015,36(12):64-68.
[10] 熊亚, 张斌, 郁崇文, 等. DMSO/TEAC对苎麻纤维柔软处理探究[J]. 中国麻业科学, 2017,39(1):44-49.
XIONG Ya, ZHANG Bin, YU Chongwen, et al. The softing property of ramie fiber treated by DMSO/TEAC[J]. Plant Fiber Science in China, 2017,39(1):44-49.
[11] 吕陈, 张斌, 郁崇文, 等. N,N-二甲基乙酰胺对苎麻纤维处理的研究[J]. 东华大学学报(自然科学版), 2017,43(2):198-204.
LV Chen, ZHANG Bin, YU Chongwen, et al. Study on the performance of ramie fibers treated with N,Ndimethlacetamide[J]. Journal of Donghua University (Natural Science Edition), 2017,39(1):44-49.
[12] HIROYUKI Kono, SAYAKA Fujita. Biodegradable superabsorbent hydrogels derived from cellulose by esterification crosslinking with 1,2,3,4-butanete-tracarboxylic dianhydride[J]. Carbolhydrate Polymers, 2012,87(4):2582-2588.
[13] 郑虹, 介兴明, 于海军, 等. 新型a-纤维素/聚砜共混超滤膜的制备与性能研究[J]. 膜科学与技术, 2015,(6):1-8.
ZHENG Hong, JIE Xingming, YU Haijun, et al. Preparation and characterization of a -cellulose/polysulfoneblend UF membrane[J]. Membrane Science and Technology, 2015,(6):1-8.
[14] LI Zhaoling, MENG Chaoran, YU Chongwen, et al. Analysis of oxidized cellulose introduced into ramie fiber by oxidation degumming[J]. Textile Research Jourmal, 2015,85(20):2125-2135.
[1] GUAN Fucheng, GUO Jing, LÜ Lihua, TAN Qian, SONG Jingxing, ZHANG Xin. Hydrogen bonding mechanism and properties of polyvinyl alcohol / krill protein fibers [J]. Journal of Textile Research, 2020, 41(10): 7-13.
[2] YANG Fan, LIU Junhua, BIAN Angting, WANG Yanping, QIAN Qiyuan, NI Jianhua, XIA Yumin, HE Yong, WANG Yimin. Influence of heat treatment on structure and properties of thermotropic liquid crystalline polyarylate fiber [J]. Journal of Textile Research, 2019, 40(11): 9-12.
[3] ZHANG Tengfei, SHI Ludan, HU Hongmei, WANG Yu, WANG Xueli, YU Jianyong. Synthesis and characterization of bio-based polyamide 56 oligomer modified polyester [J]. Journal of Textile Research, 2019, 40(06): 1-7.
[4] . Measurement of crystallinity and crystal orientation of polyester industrial yarns by 2-D X-ray diffraction [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(03): 19-25.
[5] . Preparation of oriented nanowires by melt differential electrospinning [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(01): 8-12.
[6] . Influence of ultrasonic treatment on cellulase hydrolysis of bamboo powder [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(01): 83-87.
[7] . Preparation and characterization of rice straw cellulose nanowhiskers [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(01): 1-7.
[8] . Structure and property of methanol protein modified viscose fiber [J]. JOURNAL OF TEXTILE RESEARCH, 2016, 37(09): 12-15.
[9] . Structure and performance of corn bracts and its fiber [J]. JOURNAL OF TEXTILE RESEARCH, 2016, 37(07): 7-12.
[10] . Preparation and characterization of microcrystalline cellulose from Salix psammophila bark [J]. JOURNAL OF TEXTILE RESEARCH, 2016, 37(06): 7-12.
[11] . Hydrophobic surface modification of ramie fibers with 1-octylene treatment and atmospheric pressure plasma treatment [J]. Journal of Textile Research, 2015, 36(06): 7-12.
[12] . Structure and properties of colored tussah silk fibers [J]. Journal of Textile Research, 2015, 36(04): 16-19.
[13] . Modification of poly (3-hydroxybutyrate-co-4-hydroxybutyrate) by epoxy-based chain extenders [J]. JOURNAL OF TEXTILE RESEARCH, 2014, 35(8): 139-0.
[14] wei-lai chen. Testing and analyzing microstructures and mechanical properties of T800 elastic yarn [J]. JOURNAL OF TEXTILE RESEARCH, 2014, 35(3): 18-0.
[15] . Study on swelling behaviors of cellulose pulp in NMMO/H2O [J]. JOURNAL OF TEXTILE RESEARCH, 2014, 35(2): 116-0.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!