JOURNAL OF TEXTILE RESEARCH ›› 2018, Vol. 39 ›› Issue (02): 165-170.doi: 10.13475/j.fzxb.20171001106

Previous Articles     Next Articles

Woven fabric texture representation and application based on K-SVD dictionary

  

  • Received:2017-10-09 Revised:2017-11-16 Online:2018-02-15 Published:2018-02-11

Abstract:

In order to wel adapt the woven fabric texture and reduce the algorithm running time, three basic weave patterns (plain, twill and satin) were chosen as trained samples to learn an adaptive dictionary by K-means singular value decomposition (K-SVD) dictionary learning approach. In order to select appropriate sparsity cardinality T for different applications, peak sognal to noise ratio (PSNR) and structural similarity index measurement  (SSIM) wer chosen as evaluating preformance indexes. For regular fabric texture image reconstruction, T=6, the experimental results demonstrate that the proposed method not only can approximate fabric samples well, but also can improve the quality of reconsturcted image (in terms of PSNR and SSIM), in comparison with discrete cosine transformation dectionary. In addition, for fabric flaw detection, T=4, the K-SVD can well adapt samples with defects, and has stronger capability of identifying defects, compared with discrete cosine transformation dictionary.

Key words: woven fabric texture characterization, discrete cosine transformation dictionary, K-SVD dictionary, edfect detection, image reconstruction

No related articles found!
Viewed
Full text
71
HTML PDF
Just accepted Online first Issue Just accepted Online first Issue
0 0 0 0 0 71

  From Others local
  Times 14 57
  Rate 20% 80%

Abstract
921
Just accepted Online first Issue
0 0 921
  From Others local
  Times 746 175
  Rate 81% 19%

Cited

Web of Science  Crossref   ScienceDirect  Search for Citations in Google Scholar >>
 
This page requires you have already subscribed to WoS.
  Shared   
  Discussed   
No Suggested Reading articles found!