Journal of Textile Research ›› 2019, Vol. 40 ›› Issue (04): 83-89.doi: 10.13475/j.fzxb.20171103207

• Dyeing and Finishig & Chemicals • Previous Articles     Next Articles

Ultrasonic treatment of Modal fiber dyed with madder

LI Yang1,2, ZHANG Yuanming2, JIANG Wei1,2, ZHANG Jianming3, WANG Sishe3, SU Jianjun3, HAN Guangting1,2,3()   

  1. 1. College of Textiles & Clothing, Qingdao University, Qingdao, Shandong 266071, China
    2. State Key Laboratory of Bio-Fibers and Eco-Textiles(Qingdao University), Qingdao, Shandong 266071, China
    3. Shandong Hengfeng Plant Dyeing Industrialization Production Technology Research Institute, Dezhou, Shandong 253000, China
  • Received:2017-11-16 Revised:2018-12-17 Online:2019-04-15 Published:2019-04-16
  • Contact: HAN Guangting E-mail:kychgt@qdu.edu.cn

Abstract:

In order to improve the spinnability of the Modal fiber dyed with madder, ultrasonic treatment was employed to remove the attached particulate matters on the surface of the dyed fibers. The influence of ultrasonic power density, temperature and time on the removal of particulate matters was discussed by single factor test. The experimental factors and levels were selected on the basis of the single factor experiment. The effects of the variates and their interactions on the removal of attached particulate matters on the dyed fiber surface were then studied by the Box-Behnken experiment. The results show that ultrasonic temperature has the greatest effect on the removal of particulate matters on the surface of the fiber, and the influence of power density is the least. The prediction model of regression equation obtained by using Design Expert software has a predictive effect on industrialization. The optimum conditions for the ultrasonic particle removal are as follows: ultrasonic power density of 0.67 W/cm2, ultrasonic temperature of 43 ℃ and ultrasonic time of 22 min.

Key words: plant dyeing, Modal fiber, ultrasonic treatment, Box-Behnken test, madder, dyeing

CLC Number: 

  • TS102.2

Fig.1

Absorption spectrum curve of suspended solids"

Fig.2

Standard curve of suspended solids"

Fig.3

SEM images of Modal fiber before(a) and after(b) dyeing"

Fig.4

Curve of suspended solids' absorbance with time"

Fig.5

Effect of ultrasonic power density on removal of particulate particles on Modal fiber surface"

Fig.6

Effect of ultrasonic temperature on removal of particulate matter on Modal fiber surface"

Fig.7

Effect of ultrasonic action time on removal of particulate matter on fiber surface"

Tab.1

Factor and levels in response surface design"

水平 因素
功率密度/
(W·cm-2)
超声波处理
时间/min
超声波处理
温度/℃
-1 0.30 15.0 30
0 0.65 22.5 45
1 1.00 30.0 60

Tab.2

Factor and levels in response surface Box-Behnken design arrangement and corresponding"

序号 编码值 颗粒物质量浓度/(g·L-1)
A B C
1 -1 -1 0 0.114 953
2 1 -1 0 0.152 400
3 -1 1 0 0.124 315
4 1 1 0 0.138 491
5 -1 0 -1 0.132 072
6 1 0 -1 0.169 652
7 -1 0 1 0.179 816
8 1 0 1 0.102 248
9 0 -1 -1 0.163 099
10 0 1 -1 0.112 047
11 0 -1 1 0.113 348
12 0 1 1 0.128 595
13 0 0 0 0.236 254
14 0 0 0 0.222 746
15 0 0 0 0.237 725
16 0 0 0 0.249 761
17 0 0 0 0.225 02

Tab.3

Analysis of variance for each term of fitted regression model"

方差来源 平方和/10-4 自由度 均方/10-3 F p 显著性
模型 400.00 9 4.434 18.600 0.000 4 ***
x1 0.17 1 0.017 0.071 0.797 6
x2 2.04 1 0.204 0.850 0.386 2
x3 3.49 1 0.349 1.470 0.265 3
x1x2 1.35 1 0.135 0.570 0.475 6
x1x3 33.15 1 3.315 13.910 0.007 4 ***
x2x3 10.99 1 1.099 4.160 0.068 9
x12 76.21 1 7.621 31.980 0.000 8 ***
x22 150.00 1 15.000 61.950 0.000 1 ***
x32 88.36 1 8.836 37.080 0.000 5 ***
残差 16.68 7 0.238
失拟相 11.94 3 0.398 3.360 0.136 3
净误差 4.74 4 0.119
总离差 420.00 16

Fig.8

Response surface of ultrasonic power density and time interaction"

Fig.9

Response surface of interaction between ultrasonic power density and temperature"

Fig.10

Response surface of ultrasonic temperature and time interaction"

Fig.11

SEM images of fiber before(a) and after(b) ultrasound treatment(×1 000)"

Fig.12

Comparison of fiber strength before and after ultrasound treatment"

[1] 张惠芳, 惠晶, 徐红. 两种天然植物染料染色料的应用现状及发展前景[J]. 纺织科技进展, 2013(3):5-7.
ZHANG Huifang, HUI Jing, XU Hong. Application status and development prospects of two kinds of natural vegetable dyes[J]. Progress in Textile Science & Technology>, 2013(3):5-7.
[2] 榕嘉. 茜草的性能和染色试验[J]. 丝绸, 2002(2):28-29.
RONG Jia. The properties and dyeing experiments of madder[J]. Journal of Silk>, 2002(2):28-29.
[3] 万震, 周红丽. 莫代尔散纤维染色技术[J]. 染整技术, 2007,29(4):21-23.
WAN Zhen, ZHOU Hongli. Dyeing of modal loose stock fibres[J]. Textile Dyeing and Finishing Journal, 2007,29(4):21-23.
[4] 刘祥霞, 杜文琴, 吴翠. 植物染料分子状态与其上染关系[J]. 纺织学报, 2013,34(9):84-88.
LIU Xiangxia, DU Wenqin, WU Cui. Vegetable dyes:molecular status vs dyeing ability[J]. Journal of Textile Research, 2013,34(9):84-88.
[5] 肖敏, 杨峰, 王旭荣, 等. 分光光度法测定金黄色葡萄球菌菌液浓度方法的建立[J]. 动物医学进展, 2014(11):40-43.
XIAO Min, YANG Feng, WANG Xurong, et al. Establishment of concentration determination of Staphylococcus aureus by spectrophotometry[J]. Progress in Veterinary Medicine, 2014(11):40-43.
[6] 毕延根, 杨少峰. 用紫外-可见分光光度计测定油样中沥青质含量[J]. 分析测试学报, 2000,19(1):41-44.
BI Yangen, YANG Shaofeng. Determination of asphaltene in petroleum by UV/VIS spectrophotometry[J]. Journal of Instrumental Analysis, 2000,19(1):41-44.
[7] SHEIKH J, JAGTAP P S, TELI M D. Ultrasound assisted extraction of natural dyes and natural mordants vis a vis dyeing[J]. Fibers & Polymers, 2016,17(5):738-743.
[8] VEDAR A N, SANDHYA K V, CHARUKESH N R B, et al. Ultrasonic extraction of natural dye from Rubia Cordifolia, optimisation using response surface methodology (RSM) & comparison with artificial neural network (ANN) model and its dyeing properties on different substrates[J]. Chemical Engineering & Processing Process Intensification, 2017,114:46-54.
[9] KUSUMA H S, SUDRAJAT R G M, SUSANTO D F, et al. Response surface methodology (RSM) modeling of microwave-assisted extraction of natural dye from Swietenia mahagony: a comparation between Box-Behnken and central composite design method[J]. AIP Conference Proceedings, 2015,1699(1):212-216.
[10] 陆洋, 彭飞, 黄丽霞, 等. 响应面法优化超声辅助提取贯众多酚工艺[J]. 天然产物研究与开发, 2015(1):103-108.
LU Yang, PENG Fei, HUANG Lixia, et al. Optimization of ultrasonic-assisted extraction conditions of polyphenol from cyrtomium fortunei by response surface methodo-logy[J]. Nat Prod Res Develop>, 2015(1):103-108.
[11] 崔方玲, 纪威. 超声空化气泡动力学仿真及其影响因素分析[J]. 农业工程学报, 2013,29(17):24-29.
CUI Fangling, JI Wei. Dynamic simulation of ultrasonic cavitation bubble and analysis of its influencing factors[J]. Transactions of the Chinese Society of Agricultural Engineering, 2013,29(17):24-29.
[12] 高永慧, 耿小丕. 超声波清洗液温度变化规律的研究[J]. 承德石油高等专科学校学报, 2005,7(3):39-41.
GAO Yonghui, GENG Xiaopei. Temperature change of ultrasonic wave cleaning fluid[J]. Journal of Chengde Petroleum College, 2005,7(3):39-41.
[13] 尤丽霞, 张羡, 李丹, 等. 超声波处理对棉织物污渍去除的影响[J]. 纺织学报, 2011,32(4):91-94.
YOU Lixia, ZHANG Xian, LI Dan, et al. Effect of ultrasonic treatment on stain removal of cotton fabric[J]. Journal of Textile Research, 2011,32(4):91-94.
[14] 王丽丽, 高忠涛, 杜冰, 等. 基于响应面法优化生物酶洗毛工艺[J]. 毛纺科技, 2010,38(7):9-14.
WANG Lili, GAO Zhongtao, DU Bing, et al. Enzymatic wool scouring optimization by response surface methodo-logy[J]. Wool Textile Joumal, 2010,38(7):9-14.
[15] 刘齐, 杜萍, 王飞生, 等. 超声波法提取板栗壳多糖的工艺条件优化[J]. 食品工业科技, 2014,35(3):221-224.
LIU Qi, DU Ping, WANG Feisheng, et al. Study on ultrasonic extraction of polysaccharides in chestnut shell by response surface methodology[J]. Science and Technology of Food Industry, 2014,35(3):221-224.
[16] 赵玉萍, 张娟, 郭雅琳, 等. 基于响应面分析法的超声波洗涤羽毛纤维工艺条件优化[J]. 纺织学报, 2012,33(7):24-30.
ZHAO Yuping, ZHANG Juan, GUO Yalin, et al. Process optimization of ultrasonic washing of feather fibers based on response surface method[J]. Journal of Textile Research, 2012,33(7):24-30.
[17] 胡敏, 刘凡清, 张玉先. 纤维滤料的超声波清洗技术研究[J]. 给水排水, 2008,34(11):34-37.
HU Min, LIU Fanqing, ZHANG Yuxian. Research of ultrasonic cleaning technology for fiber filter media[J]. Water & Wastewater Engineering, 2008,34(11):34-37.
[18] MOHANA S, SHRIVASTAVA S, DIVECHA J, et al. Response surface methodology for optimization of medium for decolorization of textile dye Direct Black 22 by a novel bacterial consortium[J]. Bioresource Technology, 2008,99(3):562-569.
pmid: 17804220
[1] LI Qing, GUAN Binbin, WANG Ya, LIU Tianhui, ZHANG Luohong, FAN Zenglu. Photosensitizers sensitized Cu-organic framework for highly efficient photocatalytic degradation of Reactive Dark Blue K-R [J]. Journal of Textile Research, 2020, 41(10): 87-93.
[2] LI Ruiqing, WANG Wei, WEI Bingju, ZHOU Changwen, ZHANG Shutao. Sulfur black dyeing process with environment friendly reducing agent [J]. Journal of Textile Research, 2020, 41(08): 50-54.
[3] ZHAN Liuxiang, LI Wan, WANG Gaojun, ZHAO Xianli, WANG Ni, LI Yuling. Applied research progress of microwave treatment in protein fiber processing [J]. Journal of Textile Research, 2020, 41(08): 128-134.
[4] ZHAO Zhiqi, LI Qiujin, SUN Yuejing, GONG Jixian, LI Zheng, ZHANG Jianfei. Application of magnetic-graphene oxide / poly(allylamine hydrochloride) microcapsules for adsorption of dyes [J]. Journal of Textile Research, 2020, 41(07): 109-116.
[5] DING Yongsheng, DAI Yamin, ZHONG Yi, XU Hong, MAO Zhiping, ZHANG Linping, CHEN Zhize. Dyeing kinetics of reactive dye on cotton yarn in Pickering emulsion system [J]. Journal of Textile Research, 2020, 41(07): 101-108.
[6] WANG Yating, ZHAO Jiaqi, WANG Bijia, FENG Xueling, QIAN Guochun, SUI Xiaofeng. Research progress in dyeing and functional finishing of artificial microfiber leather [J]. Journal of Textile Research, 2020, 41(07): 188-196.
[7] SONG Huijun, ZHAI Yali, CHAO Yiyuan, ZHU Chaoyu. Silk fabric dyed with gardenia blue pigment [J]. Journal of Textile Research, 2020, 41(06): 81-85.
[8] LIU Yanchun, BAI Gang. Application of berberine in polyacrylonitrile / cellulose acetate composite fiber dyeing [J]. Journal of Textile Research, 2020, 41(05): 94-98.
[9] JI Hong, ZHANG Yang, CHEN Kang, SONG Minggen, JIANG Quan, FAN Yonggui, ZHANG Yumei, WANG Huaping. Developing black high-tenacity polyester yarns based on dynamic characteristics [J]. Journal of Textile Research, 2020, 41(04): 1-8.
[10] XU Hongyun, YU Cun, SU Bang. Optimization of decolorization conditions of Direct Scarlet 4BS by Cerrena unicolor [J]. Journal of Textile Research, 2020, 41(04): 78-83.
[11] WANG Xiaochun, ZHANG Jianfei, ZHANG Liping, WANG Nana, YAN Jinlong, ZHAO Guoliang. Influence of extreme hydrophobic dye structure on dyeing properties of ultrahigh molecular weight polyethylene fibers [J]. Journal of Textile Research, 2020, 41(03): 78-83.
[12] HUANG Qi, ZHOU Qihong, ZHANG Qian, WANG Shaozong, FAN Wei, SUN Huifeng. Layout optimization of dip dyeing workshop based on system layout planning-genetic algorithm [J]. Journal of Textile Research, 2020, 41(03): 84-90.
[13] LI Feng, ZHANG Kun, YUAN Li′na. Research and implementation of information model for textile intelligent dyeing and finishing workshop based on OPC UA [J]. Journal of Textile Research, 2020, 41(02): 149-154.
[14] WANG Xiaoyan, DU Jinmei, PENG Lingqi, JING Lili, XU Changhai. Alkali reduction and one-bath-one-step process for dyeing polyester knitted fabric [J]. Journal of Textile Research, 2020, 41(01): 80-87.
[15] WANG Kangkang, LI Xiaoyan, YAO Jiming. Effect of different iron salt media on indigo electrochemical reduction system [J]. Journal of Textile Research, 2020, 41(01): 75-79.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!