Journal of Textile Research ›› 2019, Vol. 40 ›› Issue (01): 26-31.doi: 10.13475/j.fzxb.20171105306

• Fiber Materials • Previous Articles     Next Articles

Evaluation on comprehesive physical properties of special animal fibers based on gray clustering

XING Lijuan1, LIU Xinjin1(), SU Xuzhong1, CAO Xiuming2   

  1. 1. Key Laboratory of Eco-Textiles (Jiangnan University), Ministry of Education, Wuxi, Jiangsu 214122, China
    2. Jiangsu Sunshine Group Co., Ltd., Jiangyin, Jiangsu 214426, China
  • Received:2017-11-28 Revised:2018-09-14 Online:2019-01-15 Published:2019-01-18
  • Contact: LIU Xinjin E-mail:liuxinjin2006@163.com

Abstract:

In order to explore the comprehensive physical properties of special animal fibers, the length, fineness, strength, curl and friction of nine kinds of animal fibers were tested in the same environment with the camel hair, the cashmere and the yakwool as the research objects. The gray clustering analysis method was used to evaluate the comprehensive physical properties of special animal fibers. The white cashmere, yellow camel hair and black yakwool were selected, and the properties of 14.29 tex and 20.83 tex yarns were spun by four-rollers compact spinning with lattice apron and comparative analysis. The results showed that white cashmere and camel hair have the best physical properties. The physical properties of white cashmere are the second; and the purple cashmere, blue yakwool, black yakwool, blue cashmere and bleached yakwool are the worst. In the different thickness of yarns spun by four-rollers compact spinning, the overall performance of white cashmere yarns is the best, the yellow camel hair is the second, and the black yakwool are the worst. The results are consistent with the comprehensive physical properties of the fibers evaluated by gray clustering analysis.

Key words: camel hair, cashmere, yakwool, physical property, gray clustering analysis

CLC Number: 

  • TS102.3

Tab.1

Fiber physical performance indicators"

品种 纤维编号 平均长度/mm 长度不匀率/% 15 mm以下短绒率/% 线密度/dtex 线密度不匀率/% 强力/cN 卷曲数/(个·(25 mm)-1) 卷曲率/% 卷曲回复率/% 静摩擦因数 动摩擦因数
u1 u2 u'1 u'2
黑牦牛绒 1# 26.6 39.1 29.8 3.60 25.05 9.29 5.3 12.06 10.97 0.239 0 0.286 5 0.320 0 0.382 5
青牦牛绒 2# 25.9 38.9 27.7 3.49 24.53 7.57 6.1 8.38 7.80 0.230 8 0.291 7 0.321 2 0.390 4
脱色牦牛绒 3# 25.7 39.7 21.8 3.44 25.72 4.89 8.5 12.11 10.99 0.231 2 0.283 7 0.312 1 0.401 7
白山羊绒 4# 35.5 37.5 22.9 2.47 20.12 6.52 6.6 10.06 9.37 0.236 3 0.298 7 0.345 3 0.399 3
紫山羊绒 5# 30.9 37.2 29.0 2.74 22.54 5.94 4.4 4.26 3.74 0.239 0 0.302 2 0.333 8 0.411 6
青山羊绒 6# 33.6 38.0 28.3 2.81 21.79 5.61 5.3 3.59 3.40 0.230 1 0.301 8 0.336 0 0.415 6
白羊羔绒 7# 30.5 35.7 30.5 2.96 25.57 5.62 5.7 5.45 5.12 0.236 6 0.332 6 0.342 2 0.412 8
白骆驼绒 8# 36.3 42.9 19.9 3.04 29.20 6.21 8.3 9.11 7.90 0.238 6 0.299 6 0.347 7 0.410 2
黄骆驼绒 9# 41.5 40.5 14.0 2.87 27.74 6.47 7.6 6.54 5.34 0.239 9 0.299 0 0.343 1 0.408 6

Tab.2

Interval of whiting of grey number"

聚类指标 k1(好) k2(中) k3(差)
平均长度 [1.083,1.304] [0.917,1.083] [0.807,0.917]
长度不匀率 [1.030,1.084] [0.970,1.030] [0.902,0.970]
15 mm以下短绒率 [1.151,1.675] [0.849,1.151] [0.770,0.849]
线密度 [1.064,1.218] [0.936,1.064] [0.836,0.936]
离散率 [1.063,1.213] [0.937,1.063] [0.834,0.937]
强力 [1.114,1.439] [0.886,1.114] [0.757,0.886]
卷曲数 [1.106,1.324] [0.894,1.106] [0.685,0.894]
卷曲率 [1.179,1.523] [0.821,1.179] [0.452,0.821]
卷曲回复率 [1.176,1.530] [0.824,1.176] [0.473,0.824]
静摩擦(顺)因数 [1.007,1.018] [0.993,1.007] [0.976,0.993]
静摩擦(逆)因数 [1.027,1.110] [0.973,1.027] [0.947,0.973]
动摩擦(顺)因数 [1.018,1.046] [0.982,1.018] [0.939,0.982]
动摩擦(逆)因数 [1.014,1.032] [0.986,1.014] [0.950,0.986]

Fig.1

Four-roller lattice apron compact spinning system"

Tab.3

Spinning process design"

品种 线密度/tex 粗纱定量/(g·m-1) 捻度/(捻·m-1) 总牵伸倍数 钢丝圈号 隔距大小/mm 锭子速度/(r·min-1)
白山羊绒 14.29 0.3 851 43.5 6903 9/0 3.0 7 000
20.83 0.4 753 39.9 6903 6/0 4.0 9 000
黄骆驼绒 14.29 0.3 824 43.8 6903 9/0 3.0 8 000
20.83 0.4 725 40.2 6903 6/0 4.0 9 000
黑牦牛绒 14.29 0.3 1 035 43.9 6903 9/0 3.0 5 000
20.83 0.4 776 40.3 6903 6/0 4.0 7 000

Tab.4

Evenness and tensile performances of yarn"

品种 线密度/
tex
强力/
cN
伸长率/
%
CV值/
%
纱疵/(个·km-1)
细节(-50%) 粗节(+50%) 毛粒(+200%)
白山羊绒 14.29 92.5 17.7 16.9 287 100 24
20.83 153.6 17.1 12.7 11 13 10
黄驼绒 14.29 89.2 9.8 17.3 310 130 35
20.83 146.9 11.9 14.6 65 63 3
黑牦牛绒 14.29 80.5 4.7 18.5 425 235 155
20.83 97.6 9.1 15.9 115 61 26
[1] 赵君红. 驼绒纤维的结构与性能研究[D]. 乌鲁木齐: 新疆大学, 2015: 2-3.
ZHAO Junhong. Research on the structure and properties of camel fiber.[D]. Urumqi: Xinjiang University, 2015: 2-3.
[2] 吴娟, 谢春萍, 刘新金. 两种牦牛绒集聚纱性能的对比分析[J]. 棉纺织技术, 2015,43(6):53.
WU Juan, XIE Chunping, LIU Xinjin. Two kinds of yakwool condensed yarn property[J]. Cotton Textile Technology, 2015,43(6):53.
[3] 侯秀良, 高卫东, 王善元, 等. 山羊绒纤维的拉伸性能[J]. 纺织学报, 2007,28(10):18-22.
HOU Xiuliang, GAO Weidong, WANG Shanyuan, et al. Tensile properties of cashmere fiber[J]. Journal of Textile Research, 2007,28(10):18-22.
[4] 杨锁廷, 刘建中, 杨云辉, 等. 拉伸牦牛绒复式纱加工技术[J]. 毛纺科技, 2012,40(4):10-12.
YANG Suoting, LIU Jianzhong, YANG Yunhui, et al. Processing technology of multifilament yarn of stretchedyak[J]. Wool Textile Journal, 2012,40(4):10-12.
[5] 刘婵, 谢春萍, 刘新金, 等. 黑牦牛绒氧化脱色工艺优化及其可纺性[J]. 纺织学报, 2016,37(7):49-54.
LIU Chan, XIE Chunpin, LIU Xinjin, et al. Optimum oxidation bleaching condition and spinnability of black yak wool[J]. Journal of Textile Research, 2016,37(7):49-54.
[6] 刘婵, 谢春萍, 刘新金, 等. 亚铁离子质量浓度对黑牦牛绒纤维脱色的影响[J]. 纺织学报, 2016,37(4):21-26.
LIU Chan, XIE Chunpin, LIU Xinjin, et al. Influence of different ferrous sulfate concentrations on bleaching of black yak fiber[J]. Journal of Textile Research, 2016,37(4):21-26.
[7] 姚穆. 毛绒纤维标准与检验[M]. 北京: 中国纺织出版社, 1997: 264-265.
YAO Mu. The Testing Standard of Animal Fibers[M]. Beijing: China Textile & Apparel Press, 1997: 264-265.
[8] 李蔚, 刘新金, 徐伯俊, 等. 牦牛绒与骆驼绒及羊绒的物理性能对比[J]. 纺织学报, 2015,36(8):1-5.
LI Wei, LIU Xinjin, XU Bojun, et al. Comparisons among physical properties of yakwool, camel hair and cashmere[J]. Journal of Textile Research, 2015,36(8):1-5.
doi: 10.1177/004051756603600101
[9] 汪兴锋, 徐伯俊, 刘新金. 4种牦牛绒纤维物理机械性能测试[J]. 上海纺织科技, 2015,43(5):51-53.
WANG Xingfeng, XU Bojun, LIU Xinjin. Testing of physic and mechanical properties of four kinds of yak fibers[J]. Shanghai Textile Science & Technology, 2015,43(5):51-53.
[10] 蔡薇琦, 马崇启, 阚永葭, 等. 灰色聚类分析在织物热学性能评价中的应用[J]. 纺织学报, 2016,37(11):65-67.
CAI Weiqi, MA Chongqi, KAN Yongjia, et al. Application of grey clustering analysis in evaluation of fabric thermal performance[J]. Journal of Textile Research, 2016,37(11):65-67.
[11] 马崇启, 蔡薇琦, 阚永葭. 酚醛纤维织物热湿舒适性的灰色聚类分析[J]. 纺织学报, 2016,37(12):29-32.
MA Chongqi, CAI Weiqi, KAN Yongjia. Gray clustering analysis on thermal-moisture comfort of phenolic fiber fabrics[J]. Journal of Textile Research, 2016,37(12):29-32.
[12] 徐先林, 黄故, 齐利霞. 牛奶蛋白纤维混纺针织物热湿舒适性能[J]. 纺织学报, 2009,30(4):41-44.
XU Xianlin, HUANG Gu, QI Lixia. Thermal-moisture comfort of blended knitted fabrics with milk casein fibers[J]. Journal of Textile Research, 2009,30(4):41-44.
[13] 王厉冰, 胡心怡, 齐素祯. 灰色聚类分析在纺织材料性能综合评价中的应用[J]. 天津工业大学学报, 2006,25(3):23-26.
WANG Libing, HU Xinyi, QI Suzhen. Application of gray clustering analysis in performance multiple evaluation of texme materiaIs[J]. Journal of Tianjin Polytechnic University, 2006,25(3):23-26.
[14] 谢春萍, 徐伯俊. 新型纺纱[M].2 版. 北京: 中国纺织出版社, 2009: 121-131.
XIE Chunping, XU Bojun. New Methods of Making Yarns [M]. 2nd ed. Beijing: China Textile & Apparel Press, 2009: 120-131.
[1] WEI Lingli, ZOU Qinshan, WANG Lu, LUO Jing, XIA Xin. Preparation of fluorine-free water repellent treated wool / cashmere fabrics [J]. Journal of Textile Research, 2019, 40(09): 102-107.
[2] . Preparation and properties of linear polyether-blocked amino silicone [J]. Journal of Textile Research, 2019, 40(08): 89-94.
[3] . Identification of wool and cashmere based on multi-feature fusion image analysis technology#br# [J]. Journal of Textile Research, 2019, 40(03): 146-152.
[4] . Synthesis and application of waterborne polyurethane anti-pilling agent modified by linear polyether-blocked amino silicone [J]. Journal of Textile Research, 2018, 39(09): 84-89.
[5] . Spinning of low-ratio cashmere blends under slipping draft [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(06): 24-28.
[6] . Iedntification of cashmere and wool based on convolutional neuron networks and deep learning theory [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(12): 150-156.
[7] . Level set of central axis method of cashmere and wool diameter [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(09): 14-18.
[8] . Preparation and properties of nonwoven loofah [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(08): 22-27.
[9] . Rapid identification method of cashmere and wool based on bag-of-visual-word [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(07): 130-134.
[10] . Preparation and properties of Self-cleaning nano-TiO2 sol [J]. Journal of Textile Research, 2016, 37(3): 98-103.
[11] . Research status and development trend of 3-D simulation technology for weft knitted fabric [J]. JOURNAL OF TEXTILE RESEARCH, 2016, 37(11): 166-172.
[12] . Study on correlation among cashmere morphological structure [J]. JOURNAL OF TEXTILE RESEARCH, 2016, 37(06): 18-21.
[13] . Structure and physical properties of willow fibers [J]. Journal of Textile Research, 2016, 37(01): 23-27.
[14] . Comparisons among physical properties of yakwool, camel hair and cashmere [J]. JOURNAL OF TEXTILE RESEARCH, 2015, 36(08): 1-5.
[15] . Influence of concomitant content on physical and chemical properties of jute fiber [J]. Journal of Textile Research, 2015, 36(07): 17-21.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!