Journal of Textile Research ›› 2019, Vol. 40 ›› Issue (03): 109-117.doi: 10.13475/j.fzxb.20171202310

• Dyeing and Finishing & Chemicals • Previous Articles     Next Articles

Preparation of photocatalyst loaded activated carbon grafted with polyhydrazide for removing formaldehyde

ZHANG Yian1, DI Jianfeng1,2()   

  1. 1. College of Textile and Clothing, Jiangnan University, Wuxi, Jiangsu 214122, China
    2. College of Textile and Clothing, Wuyi University, Jiangmen, Guangdong 529020, China
  • Received:2017-12-11 Revised:2018-11-05 Online:2019-03-15 Published:2019-03-15
  • Contact: DI Jianfeng E-mail:djfwyu@163.com

Abstract:

In order to solve the problem of pollution due to formaldehyde, PAH grafted activated carbon (ACm-g-PAH)was prepared by the condensation reaction of grafting polyhydrazide onto nitric acid-modified activated carbon. Then, the self-purifying removal formaldehyde material of Mnx/Agy-TiO2-l-ACm-g-PAH (photocatalyst Mnx/Agy-TiO2 loaded PAH grafted activated carbon) was further assembled to eliminate the possibly secondary pollution by loading Mnx/Agy-TiO2(Mn and Ag co-doped nano-TiO2) on the surface of ACm-g-PAH. The morphology and chemical composition of Mnx/Agy-TiO2-l-ACm-g-PAH were characterized by scanning electron microscopy. And then the catalytic formaldehyde data was fitted to the kinetic equation by software Originpro 8.5 and the dynamic law of catalytic formaldehyde for Mnx/Agy-TiO2-l-ACm-g-PAH was studied. The influences of activation time, activation temperature and N,N-Dicyclohexylcarbodiimide(DCC) concentration on the formaldehyde removal rate of Mnx/Agy-TiO2-l-ACm-g-PAH materials were compared . The test results show that when the activation time is 2 h, the activation temperature is 650 ℃, DCC is 2% of the mass of activated carbon, and PAH is 11 mmol/L, its removal formaldehyde rate of the Mnx/Agy-TiO2-l-ACm-g-PAH is 99.6%. When the formaldehyde concentration loading is in the range of 5-28.2 mg/g, the formaldehyde removal rate of Mnx/Agy-TiO2-l-ACm-g-PAH show a tendency to decrease. After cleaning for 10 cycles, the self-purifying capability of the material is reduced to 12%.

Key words: visible light, formaldehyde removing material, activated carbon, kinetics, photocatalysis

CLC Number: 

  • TS194.5

Fig.1

Scheme of reactor structure"

Fig.2

Influence of activation temperature on formaldehyde removal of Mnx/Agy-TiO2-l-ACm-g-PAH"

Fig.3

Influence of activation time on formaldelye removal of Mnx/Agy-TiO2-l-ACm-g-PAH"

Tab.1

Weight ratio of ACm to Mnx/Agy-TiO2 in formaldehyde removal of Mnx/Agy-TiO2-l-ACm-g-PAH"

ACm与Mnx/Agy-TiO2的质量比 甲醛移除率/%
60∶1 57.2
50∶1 62.6
40∶1 72.8
30∶1 75.5
20∶1 78.8
10∶1 79.7
5∶1 79.3

Fig.4

Influence of concentration of PAH on formaldehyde removal of Mnx/Agy-TiO2-l-ACm-g-PAH"

Fig.5

Influence of mass ratio of DCC on formaldehyde removal of Mnx/Agy-TiO2-l-ACm-g-PAH"

Fig.6

Influence of temperature on formaldehyde removal"

Fig.7

Influence of formaldghyde concentration on formaldehyde removal"

Fig.8

Influence of washing times on formaldehyde removal"

Fig.9

Formaldehyde removal rate of different materials"

Fig.10

SEM images of Mnx/Agy-TiO2-l-ACm-g-PAH and ACm"

Fig.11

FT-IR spectra of PAH and Mnx/Agy-TiO2-l-ACm-g-PAH"

Fig.12

XPS curves of ACm and Mnx/Agy-TiO2-l-ACm-g-PAH"

Tab.2

Surface atom composition of ACm and Mnx/Agy-TiO2-l-ACm-g-PAH"

样本 元素相对含量/% 原子比 结合能/eV
C N O N与C O与C N1s O1s
ACm 97.92 0.12 1.96 0.001 23 0.020 01 418.11 532.44
Mnx/Agy-TiO2-l-ACm-g-PAH 96.38 2.21 1.41 0.022 93 0.014 62 392.16 532.10

Fig.13

XRD patterns of Mnx/Agy-TiO2-l-ACm at activation temperature of 650 ℃"

Tab.3

Photocatalic kinetics of Mnx/Agy-TiO2-ACm-g- PAH in different relative humidities"

时间/
h
甲醛浓度/(mg·g-1)
相对湿度65% 相对湿度74% 相对湿度82%
0 15.80 15.80 15.80
1 13.20 13.00 13.20
3 13.60 12.60 12.10
5 12.41 11.91 11.43
7 10.78 11.20 10.72
9 10.53 10.53 10.19
10 9.91 9.63 9.23
12 9.14 8.84 8.18
14 8.32 7.52 7.12
16 7.21 6.81 6.16
18 5.84 4.92 4.53
20 4.63 3.63 3.23
22 3.31 2.21 2.03
24 2.72 2.02 1.28

Tab.4

Fitting data of catalytic kinetics of Mnx/Agy-TiO2-l-ACm-g-PAH for formaldehyde removal"

相对湿度/% k R2
45 0.053 75 0.928 2
65 0.059 19 0.961 2
80 0.063 91 0.995 5
[1] 冯雅妮, 张梅, 罗胜利, 等. 光催化除甲醛苎麻织物的低温复合制备[J]. 纺织学报, 2017,38(12):106-110.
FENG Yani, ZHANG Mei, LUO Shengli, et al. Low temperature bonding preparation of functionalized ramie fabrics for formaldehyde photocatalytic degradation[J]. Journal of Textile Research, 2017,38(12):106-110.
[2] 朱舜, 姚玉元, 林启松, 等. 活性炭纤维负载金属铂的制备及催化氧化甲醛[J]. 纺织学报, 2014,35(2):1-5.
ZHU Shun, YAO Yuyuan, LIN Qisong, et al. Catalytic oxidation of formaldehyde by activated carbon fibers supported platinum[J]. Journal of Textile Research, 2014,35(2):1-5.
doi: 10.1177/004051756503500101
[3] CORONADO JM, ZORN ME, TEJEDOR I, et al. Photocatalytic oxidation of ketones in the gas phase over TiO2 thin films: a kinetic study on the influence of water vapor[J]. Applied Catalysis B: Environmental, 2003(43):329-344.
[4] FUJISHIMA A, RAO T N, TRYK Da. TiO2 photo-catalysts and diamond electrode[J]. Electrochimica Acta, 2000(45):4683-4690.
[5] 郑红, 汤鸿霄, 王怡中. 有机污染物半导体多相光催化氧化机理及动力学研究进展[J]. 环境科学进展, 1996,4(3):1-18.
ZHENG Hong, TANG Hongxiao, WANG Yizhong. Research progress on oxidation mechanism and kinetics of semiconductor sheterogeneous photocatalytic for organic pollutants[J]. Advance Environmental Science, 1996,4(3):1-18.
[6] 侯一宁, 王安, 王燕. 二氧化钛-活性炭纤维混合材料净化室内甲醛污染[J]. 四川大学学报, 2004(36):41-44.
HOU Yining, WANG An, WANG Yan. Removing formaldehyde from indoor gas by TiO2-active carbon fiber compound materials[J]. Journal of Sichuan University, 2004(36):41-44.
[7] ICHIURA H, KITAOKA T, TANAKA H. Removal of indoor pollutants under UV irradiation by a composite TiO2-zeolite sheet prepared using a papermaking technique[J]. Chemosphere, 2003(50):79-83.
[8] MATSUO Y, NISHINO Y, FUKUTSUKA T, et al. Introduction of amino groups into the interlayer space of graphite oxide using 3-aminopropylethoxysilanes[J]. Carbon, 2007(45):1384-1390.
[9] MATSUO Y, NISHINO Y, FUKUTSUKA T, et al. Removal of formaldehyde from gas phase by silylated graphite oxidecontaining amino groups[J]. Carbon, 2008(46):1162-1163.
[10] 郑丹丹, 周建凤, 张光先, 等. 无甲醛衬布胶水的制备及其应用[J]. 纺织学报, 2016,37(1):81-84.
ZHENG Dandan, ZHOU Jianfeng, ZHANG Guangxian, et al. Preparation of formaldehyde free glue for lining and its application[J]. Journal of Textile Research, 2016,37(1):81-84.
[11] SAEUNG S, BOONAMNUAYVITAVA V. Adsorption of formaldehyde vapor by amine-functionalized mesoporous silica materials[J]. Journal of Environmental Sciences, 2008(20):379-84.
[12] TANADA S, KAWASAKI N, NAKAMURA T, et al. Removal of formaldehyde by activated carbon containing amino groups[J]. Journal of Colloid Interface Science, 1999(214):106-108.
[13] 黄垒, 彭峰. 可见光光催化机理研究进展[J]. 工业催化, 2007,15(3):5-9.
HUANG Lei, PENG Feng. Researches in photocatalytic mechanism under visible-light[J]. Industry Catalyst, 2007,15(3):5-9.
[14] 陈仁忠, 胡毅, 袁菁红, 等. 静电纺MnO2/ PAN纳米纤维膜的制备及其催化氧化甲醛性能[J]. 纺织学报, 2015,36(5):1-6.
CHEN Renzhong, HU Yi, YUAN Jinghong, et al. Preparation of electrospun MnO2/ PAN nanofibers and catalytic oxidation on formaldehyde[J]. Journal of Textile Research, 2015,36(5):1-6.
doi: 10.1177/004051756603600101
[15] 方晓明, 张正国, 陈清林. 具可见光活性的氮掺杂二氧化钛光催化剂[J]. 化学进展, 2007,19:1282-1290.
FANG Xiaoming, ZHANG Zhengguo, CHEN Qinglin. Nitrogen doped TiO2 photocatalysts with visible-light activity[J]. Progress in Chemistry, 2007,19:1282-1290.
[16] TAMAI H, SHIRAKI K, SHIONO T, et al. Surface functionalization of mesoporous and microporous activated carbons by immobilization of diamine[J]. Journal of Colloid Interface Science, 2006(295):299-302.
[17] AMAMA PB, ITOH K, MURABAYASHI M. Photoca- talyti coxidation of trichloroethylene in humidified atmosphere[J]. Journal of Molecular Catalysis A: Chemical, 2001(176):165-172.
[1] SHEN Yue, JIANG Gaoming, LIU Qixia. Analysis on acoustic absorption performance of activated carbon fiber felts with gradient structure [J]. Journal of Textile Research, 2020, 41(10): 29-33.
[2] YANG Kai, ZHANG Xiaomei, JIAO Mingli, JIA Wanshun, DIAO Quan, LI Yong, ZHANG Caiyun, CAO Jian. Preparation and adsorption performance of high-ortho phenolic resin based activated carbon nanofibers [J]. Journal of Textile Research, 2020, 41(08): 1-8.
[3] SONG Huijun, ZHAI Yali, CHAO Yiyuan, ZHU Chaoyu. Silk fabric dyed with gardenia blue pigment [J]. Journal of Textile Research, 2020, 41(06): 81-85.
[4] QIAN Yifan, ZHOU Tang, ZHANG Liying, LIU Wanshuang, FENG Quan. Preparation of polyacrylonitrile / cellulose acetate / TiO2 composite nanofiber membrane and its photocatalytic degradation performance [J]. Journal of Textile Research, 2020, 41(05): 8-14.
[5] XIAO Qi, WANG Rui, SUN Hongyu, FANG Shu, LI Danyang. Research progress on theoretical models of mechanisms of fuzzing and pilling [J]. Journal of Textile Research, 2020, 41(02): 172-178.
[6] LUO Jiani, LI Lijun, ZHANG Xiaosi, ZOU Hantao, LIU Xueting. Modification of activated carbon fiber using graphene oxide doped titanium dioxide [J]. Journal of Textile Research, 2020, 41(01): 8-14.
[7] ZHUANG Shuai, YANG Hai, AN Jibin, HU Qian, ZHANG Hao, HE Guitian, YI Bing. Degradation kinetics and mechanism of Acid Red 37 under attack of sulfate radicals [J]. Journal of Textile Research, 2019, 40(11): 131-139.
[8] CHEN Yong, WANG Ying, HE Feng, WANG Jing, ZHU Zhiguo, DONG Zhenfeng, WANG Rui. Kinetics and properties of phosphorus flame retardant copolymerized polyester [J]. Journal of Textile Research, 2019, 40(10): 13-19.
[9] SHI Xiaoping, LI Yao, PAN Jiahao, WANG Ting, WU Liguang. Preparation of visible-light-response TiO2 photocatalyst by hydrothermal reduction [J]. Journal of Textile Research, 2019, 40(10): 105-112.
[10] ZHANG Mengyuan, HUANG Qinglin, HUANG Yan, XIAO Changfa. Electrospun poly(tetrafluoroethylene)/TiO2 photocatalytic nanofiber membrane and its application [J]. Journal of Textile Research, 2019, 40(09): 1-7.
[11] ZHANG Jingqing, SU Hui, LIANG Xiaoyun, CHEN Weiji, YAO Zhixiang. Rapid detection of banned dye Acid Red 26 in pure wool thread based on oblique projection [J]. Journal of Textile Research, 2019, 40(08): 85-88.
[12] ZHOU Ling, JIN Xiangyu. Controllability of bead structure in hot air-through bonded nonwovens and crystallization kinetics thereof [J]. Journal of Textile Research, 2019, 40(08): 27-34.
[13] LIU Qixia, ZHOU Yiru, YANG Zhilian, WANG Mei, JI Tao. Preparation and properties of spherical activated carbon-based composite fabric for permeable chemical protective clothing [J]. Journal of Textile Research, 2019, 40(06): 182-188.
[14] TAO Xuchen, LI Lin. Preparation and adsorption kinetics of calixarene fibers with selective adsorption of Pt(IV) [J]. Journal of Textile Research, 2019, 40(03): 20-25.
[15] . Nonisothermal crystallization kinetics of novel nylon-carbon chain polyamide 1211 [J]. Journal of Textile Research, 2018, 39(12): 1-6.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!