Journal of Textile Research ›› 2019, Vol. 40 ›› Issue (01): 32-39.doi: 10.13475/j.fzxb.20171206308

• Textile Engineering • Previous Articles     Next Articles

Simulation and analysis of bave partition produced by dropping end based on combinatorics

HUANG Jiwei1,2, NING Wan'e1, ZHANG Feng2,3, ZUO Baoqi2,3()   

  1. 1. College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou, Guangxi 545006, China
    2. College of Textile and Clothing Engineering, Soochow University, Suzhou, Jiangsu 215006, China
    3. National Engineering Laboratory for Modern Silk(Suzhou), Suzhou, Jiangsu 215123, China
  • Received:2017-12-31 Revised:2018-09-06 Online:2019-01-15 Published:2019-01-18
  • Contact: ZUO Baoqi E-mail:bqzuo@suda.edu.cn

Abstract:

In order to simulate the phenomenon that the merger of raw silk participated by bave in the forms of multiple segments and multiple times, and to provide reliable data about fineness sequence of filament for reeling simulation using a computer, based on the model of discrete dropping point of reeling and combinatorial theory, all subsets of bave dropping end point set were acquired, then a subset was corresponded to a bave dropping end partition modes, and the probability of artition model of dropping ends was calculated. The inverse transformation sampling method of an enumerated random variable distribution was employed to randomly sample partition models of dropping ends, making the simulation of partition dropping ends available. The simulation method is proved to be correct by means of statistical analysis for all dropping end patterns of bave and 100 million times partition simulation for dropping ends. Further, the dropping ends of 20 thousand of bave, with length in accordance with normal distribution, were simulated, confirming the accordance of the results with the distribution of the non-broken filament length of bave.

Key words: bave partition produced by dropping end, combinatorics, computer simulation of silk reeling, non-broken filament length, times of bave dropping end, size sequence of bave

CLC Number: 

  • TS143.2

Fig.1

Dropping nodes and probability of bave"

Fig.2

Dropping probability of bave dropping nodes with different reelability percent parameters"

Fig.3

Dropping probability of bave dropping nodes with different dropping uniformity parameters"

Fig.4

Dropping probability of bave dropping nodes with different dropping position parameters"

Tab.1

Some simple examples of bave dropping partition"

茧丝长 落绪节
点数
落绪节
点母集
落绪模
式子集
落绪模式
的概率
概率和
1 0 { } { } 1 1
2 1 {1} { } q2,1 1
{1} p2,1
3 2 {1,2} { } q3,1q3,2 1
{1} p3,1q3,2
{2} q3,1p3,2
{1,2} p3,1p3,2
4 3 {1,2,3} { } q4,1q4,2q4,3 1
{1} p4,1q4,2q4,3
{2} q4,1p4,2q4,3
{3} q4,1q4,2p4,3
{1,2} p4,1p4,2q4,3
{1,3} p4,1q4,2p4,3
{2,3} q4,1p4,2p4,3
{1,2,3} p4,1p4,2p4,3

Fig.5

Statistical overview of dropping times (a) and reelability length (b) of all dropping patterns at bave node dropping probabilities with different reelability percent parameter"

Fig.6

Statistical overview of dropping times (a) and reelability length (b) of all dropping patterns at bave node dropping probabilities with different dropping uniformity parameters"

Fig.7

Statistical overview of dropping times (a) and reelability length (b) of all dropping patterns at bave node dropping probabilities with different dropping position parameters"

Fig.8

Result of random partition simulation at fixed length of bave. (a) Number of bave dropping times; (b) Non-broken filament length"

Fig.9

Result of random partition simulation at normal distributed length of bave. (a) Number of bave dropping times;(b) Non-broken filament length"

[1] 陈文兴, 傅雅琴, 江文斌. 蚕丝加工工程[M]. 北京: 中国纺织出版社, 2013: 99-100.
CHEN Wenxing, FU Yaqin, JIANG Wenbin. Silk Processing Engineering[M]. Beijing: China Textile & Apparel Press, 2013: 99-100.
[2] 章朝凯, 徐向宏, 余荣峰. 蚕茧生产、收烘、仓储等环节对蚕茧解舒影响的研究[J]. 桑蚕通报, 2014,45(2):19-29.
ZHANG Chaokai, XU Xianghong, YU Rongfeng. Effect of silkworm cocoon production and drying and storage conditions on its reelability[J]. Bulletin of Sericulture, 2014,45(2):19-29.
[3] 唐科梦, 谢启凡, 杨明英, 等. 蚕茧的茧层表面形态和丝胶特性对解舒性状的影响[J]. 蚕业科学, 2015,41(4):0688-0693.
TANG Kemeng, XIE Qifan, YANG Mingying, et al. Effects of surface morphology and sericin characters of silkworm cocoons on filament reelability[J]. Science of Sericulture, 2015,41(4):0688-0693.
[4] 朱红涛, 杨继芬, 白兴荣, 等. 上蔟日数与烘茧温度对蚕茧解舒率的影响研究[J]. 北方蚕业, 2013,34(1):14-16.
ZHU Hongtao, YANG Jifen, BAI Xingrong, et al. Preliminary research on effect of mounting days of silkworm and cocoon drying temperature on reelability percentage[J]. North Sericulture, 2013,34(1):14-16.
[5] 俞海峰. 自动缫制丝工艺设计及其CAD系统的研究[D]. 苏州:苏州大学, 2008: 23-32.
YU Haifeng. Automatic reeling silk technology design and CAD system research[D]. Suzhou: Soochow University, 2008: 23-32.
[6] 张克仁. 解舒率的分布及其特征数[J]. 苏州丝绸工学院学报, 1989,9(2):15-27.
ZHANG Keren. The distribution of reelability percentage and their characteristic values[J]. Journal of Suzhou Institute of Silk Textile Technology, 1989,9(2):15-27.
[7] 费万春. 混茧与中途落绪次数波动性的分析[J]. 江苏丝绸, 2001(4):1-2.
FEI Wanchun. The influence of cocoon mixing on fluctuation of bave midway dropping end frequencies[J]. Jiangsu Silk, 2001(4):1-2.
[8] 白伦. 四百粒解舒率的分布及其特征数[J]. 苏州丝绸工学院学报, 1983(4):1-13.
BAI Lun. The distribution of reelability percentage of 400 cocoons and their characteristic values[J]. Journal of Suzhou Institute of Silk Textile Technology, 1983(4):1-13.
[9] 白伦, 王建民, 周韶. 茧丝长与解舒丝长的关系研究[J]. 苏州丝绸工学院学报, 1999,19(2):8-16.
BAI Lun, WANG Jianmin, ZHOU Shao. On relation between the non-broken filament length of cocoon and the length of cocoon filament[J]. Journal of Suzhou Institute of Silk Textile Technology, 1999,19(2):8-16.
[10] 白伦, 王建民, 周韶. 解舒丝长分布研究[J]. 苏州丝绸工学院学报, 2000,20(1):15-24.
BAI Lun, WANG Jianmin, ZHOU Shao. On the distribution of non-broken filament length of cocoon[J]. Journal of Suzhou Institute of Silk Textile Technology, 2000,20(1):15-24.
[11] 白伦, 王建民, 周韶. 解舒丝长的模拟生成研究[J]. 苏州丝绸工学院学报, 2000,20(5):5-11.
BAI Lun, WANG Jianmin, ZHOU Shao. Generation of the non-broken filament length of cocoon by computer simulation[J]. Journal of Suzhou Institute of Silk Textile Technology, 2000,20(5):5-11.
[12] 黎霞. 定纤缫丝及质量检验模拟系统研究[D]. 苏州:苏州大学, 2002: 40-48.
LI Xia. System of simulation fixed size silk reeling process[D]. Suzhou:Soochow University, 2002: 40-48.
[13] 罗军. 定粒生丝纤度管理研究[D]. 苏州:苏州大学, 2002: 6-11.
LUO Jun. Study on management of raw silk size in fixed cocoon number reeling process[D]. Suzhou:Soochow University, 2002: 6-11.
[14] 吴春丽. 定粒配茧缫丝的建模及模拟研究[D]. 苏州:苏州大学, 2005: 7-37.
WU Chunli. The study on modeling and simulating of reeling process with fixed number of matched cocoons[D]. Suzhou:Soochow University, 2005: 7-37.
[15] 费万春, 白伦. 茧丝纤度序列趋势分量的解析和仿真研究[J]. 丝绸, 2004(8):22-28.
FEI Wanchun, BAI Lun. Analysis and simulation on the size series of cocoon filaments[J]. Journal of Silk, 2004(8):22-28.
[16] 白伦, 费万春, 罗军, 等. 茧丝纤度曲线的解析模型及其在模拟缫丝中的应用[J]. 蚕业科学, 2002,28(3):233-237.
BAI Lun, FEI Wanchun, LUO Jun, et al. An analytical model of the size curve of cocoon filament and it's application to the simulation text[J]. Science of Sericulture, 2002,28(3):233-237.
[17] 白伦, 谢佳, 李林甫, 等. 茧丝纤度曲线的模拟生成[J]. 苏州丝绸工学院学报, 1998,18(1):1-8,26.
BAI Lun, XIE Jia, LI Linfu, et al. Generation of the size curve of cocoon filament by computer simulation[J]. Journal of Suzhou Institute of Silk Textile Technology, 1998,18(1):1-8,26.
[18] 费万春. 茧丝纤度曲线的预测研究[D]. 苏州:苏州大学, 2002: 48-57.
FEI Wanchun. Study on forecasting size curves of cocoon filaments[D]. Suzhou:Soochow University, 2002: 48-57.
[19] 胡征宇, 俞海峰. 茧丝线密度变化的拟合与预测[J]. 纺织学报, 2008,29(10):29-33.
HU Zhengyu, YU Haifeng. Fitting and forecasting the silk size curve[J]. Journal of Textile Research, 2008,29(10):29-33.
[20] 白伦, 王建民, 周韶. 解舒丝长的特征函数及其应用[J]. 苏州丝绸工学院学报, 2000,20(4):1-8.
BAI Lun, WANG JianMin, ZHOU Shao. On the characteristic function of non-broken filament length of cocoon[J]. Journal of Suzhou Institute of Silk Textile Technology, 2000,20(4):1-8.
[21] 白伦, 王建民, 周韶. 解舒丝长分布的混合分布型解析[J]. 苏州丝绸工学院学报, 2001,21(1):1-9.
BAI Lun, WANG Jianmin, ZHOU Shao. On the division of distribution of non-broken filament length of cocoon[J]. Journal of Suzhou Institute of Silk Textile Technology, 2001,21(1):1-9.
[22] 布鲁迪. 组合数学[M].5版.冯速,译. 北京: 机械工业出版社,2012: 16-37, 53-73.
BRUALDI R A. Introductory Combinatorics[M].5th ed. FENG Su, Translating. Beijing: China Machine Press,2012: 16-37, 53-73.
[23] 肖枝洪, 朱强. 统计模拟及其R实现[M]. 武汉: 武汉大学出版社, 2010: 104-132.
XIAO Zhihong, ZHU Qiang. Statistical Simulation and its R Implementation[M]. Wuhan: Wuhan University Press, 2010: 104-132.
[24] 莱维汀. 算法设计与分析基础[M].3版.潘彦,译. 北京: 清华大学出版社, 2015: 265-296.
LEVITIN A. Introduction to the Design and Analysis of Algorithms[M]. 3rd ed. PAN Yan, Translating. Beijing: Tsinghua University Press, 2015: 265-296.
[25] 白伦, 王建民, 周韶. 关于连续型解舒丝长分布的解析[J]. 苏州丝绸工学院学报, 2000,20(3):1-9.
BAI Lun, WANG Jianmin, ZHOU Shao. On continuous distribution of non-broken filament length of cocoon[J]. Journal of Suzhou Institute of Silk Textile Technology, 2000,20(3):1-9.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!