Journal of Textile Research ›› 2019, Vol. 40 ›› Issue (01): 40-45.doi: 10.13475/j.fzxb.20180102006

• Textile Engineering • Previous Articles     Next Articles

Contact spinning based on simplified embeddable and locatable system and properties of spun ramie yarn

FU Chiyu1, WANG Cancan1, HE Mantang1, XIA Zhigang1,2()   

  1. 1. College of Textile Science and Engineering, Wuhan Textile University, Wuhan, Hubei 430200, China
    2. State Key Laboratory Base of New Materials and Advanced Processing Technology, Wuhan Textile University, Wuhan, Hubei 430200, China
  • Received:2018-01-06 Revised:2018-10-11 Online:2019-01-15 Published:2019-01-18
  • Contact: XIA Zhigang E-mail:zhigang_xia1983@hotmail.com

Abstract:

In order to solve the high rigidity and excessive hairiness of ramie fiber products and operation inconvenience of four-components embeddable and locatable spinning (ELS), a contact spinning based on simplified embeddable and locatable system was provided by simplifiying embeddable components and adding sponge contact device during twisting part. Yarn formation mechanisms were theoretically analyzed for the S-ELS, dry contact S-ELS, and wet contact S-ELS. By modification on ring spinning frame, the ramie yarns spun by different methods were compared. The results show that compared with the S-ELS and dry contact spinning for S-ELS, wet contact spinning of S-ELS can online soften the ramie fibers to facilitate fiber twisting and wrapping, producing the optimum qualified ramie yarns with the lowest hairiness and the highest strength.

Key words: ramie yarn, contact simplified embeddable and locatable spinning, yarn property, wet spinning

CLC Number: 

  • TS104.7

Fig.1

Component process schematic diagram of S-ELS"

Fig.2

Models of S-ELS. (a) S-ELS system model; (b) Dry contact S-ELS model; (c) Wet contact S-ELS model and relative position of sponge contactor and yarn"

Fig.3

Filament feeding device(a) and groove holding device(b)"

Fig.4

Appearance images of S-ELS yarns."

Tab.1

Hairiness of yarns根/(10 m)"

纱线
名称
纺纱
方案
不同长度毛羽数 T S
1 mm 2 mm 3 mm 4 mm 5 mm 7 mm 10 mm 12 mm

方案A 712.6±29.6 284.9±25.4 159.9±17.0 101.7±13.7 61.5±9.8 23.3±3.3 5.6±2.5 2.1±1.6 1351.6±103.0 354.1±48.0
方案B 392.9±25.9 125.5±13.8 58.4±8.3 32.8±5.3 19.2±6.8 6.5±3.2 1.5±1.9 0.5±1.2 637.3±66.4 118.9±26.6
方案C 82.7±22.7 23.4±7.4 10.4±4.3 6.0±2.9 2.3±1.1 0.7±0.6 0.1±0.3 0.0±0.0 125.6±39.4 19.5±9.3

方案A 1107.7±80.3 517.3±45.0 313.3±10.8 196.7±12.1 136.7±16.7 60.3±10.6 14.0±2.0 10.7±3.1 2356.7±180.4 731.7±55.1
方案B 683.3±12.0 241.7±29.2 153.0±9.8 123.7±9.7 84.0±10.6 46.3±7.0 12.7±2.3 10.0±1.0 1354.7±81.7 429.7±40.5
方案C 387.0±35.6 210.7±22.0 141.3±16.6 110.7±2.3 78.7±4.0 37.7±2.5 11.3±2.1 7.3±2.1 984.7±87.2 387.0±29.6

Tab.2

Tensile properties of S-ELS yarns"

纺纱
方案
断裂强力 断裂伸长率
平均值/cN CV值/% 平均值/% CV值/%
方案A 211.86 21.48 3.67 21.95
方案B 221.69 7.41 3.86 19.92
方案C 232.84 14.94 3.27 15.96

Tab.3

Evenness properties of S-ELS yarns"

纺纱
方案
条干
CV值/%
纱疵/(个·km-1)
细节(-50%) 粗节(+50%) 棉结(+200%)
方案A 27.59 1 140.0 920.0 870.0
方案B 30.27 1 745.0 1 620.0 2 980.0
方案C 29.92 1 375.0 1 495.0 2 160.0
[1] BHATTACHARYA SD, DAS A K. Alkali degumming of decorticated ramie[J]. Color Technology, 2006,117:342-345.
doi: 10.1111/cte.2001.117.issue-6
[2] LIU Z T, YANG Y, ZHANG L, et al. Study on the cationic modification and dyeing of ramie fiber[J]. Cellulose, 2007,14:337-345.
doi: 10.1007/s10570-007-9117-0
[3] 何文元. 改性苎麻纤维的性能研究[J]. 上海纺织科技, 2004,32(5):13-15.
HE Wenyuan. Study on the properties of modified ramie fiber[J]. Shanghai Textile Technology, 2004,32(5):13-15.
[4] GAO X, YANG J, YU C. Analysis of the effect of the ramie fiber properties on the yarn quality by neural network[C]// 7th International Conference on Computer Science & Education (ICCSE 2012). Melbourne: [s.n.], 2012: 433-437.
[5] ANGELINI L G, LAZZERI A, LEVITA G, et al. Rarnie (Boehmeria nivea (L) Gaud) and Spanish broom (Spartium junceum L) fibers for composite materials: agmnomical aspects, morphology and mechanical properties[J]. Industrial Crops and Products, 2000,11(2/3):145.
doi: 10.1016/S0926-6690(99)00059-X
[6] ISHIKAWA A, OKANO T, SUGIYAMA J. Fine structure and tensile properties of ramie fibres in the cryststalline form of cellulose-I, cellulose-II, cellulose-III-I and cellulose-IV-I[J]. Polymer, 1997,38(2):463.
doi: 10.1016/S0032-3861(96)00516-2
[7] 邸振权, 娄建军. 麻纺织品的发展及前景展望[J]. 天津纺织科技, 2002,40(2):2-3.
DI Zhengquan, LOU Jianjun. Development and prospects of hemp textiles[J]. Tianjin Textile Technology, 2002,40(2):2-3.
[8] SUN X, GUAN Y, WEN G, et al. Study on the characteristics of hemp fibres and applications[J]. J Text Res, 2001,34:234-237.
[9] GODA K, SREEKALA M S, GOMES A, et al. Improvement of plant based natural fibers for toughening green composites: effect of load application during mercerization of ramie fibers[J]. Composites Part A, 2006,37:2213-2220.
doi: 10.1016/j.compositesa.2005.12.014
[10] 胡逊, 魏伟书, 吴伟栋. 苎麻阳离子改性研究:二[J]. 印染, 1996,22(3):9-12.
HU Xun, WEI Weishu, WU Weidong. Study on ramie cationic modification:Ⅱ[J]. China Dyeing & Finishing, 1996,22(3):9-12.
[11] 吴晓燕, 张元明, 章悦庭. 苎麻纤维化学改性及新进展[J]. 纺织学报, 2003,24(2):85.
WU Xiaoyan, ZHANG Yuanming, ZHANG Yueting. Chemical modification of ramie fiber and its new progress[J]. Journal of Textile Research, 2003,24(2):85.
[12] FRISONI G, BAIARDO M, SCANDOLA M, et al. Natural cellulose fibers: heterogeneous acetylation kinetics and biodegradation behavior[J]. Biomacromolecules, 2001(2):476.
doi: 10.1021/bm0056409 pmid: 11749209
[13] 何文. 新型苎麻湿法纺纱加工技术研究[J]. 中国麻业科学, 2009,31(5):313-316.
HE Wen. Study on the processing technology of the new wet spinning of ramie[J]. Plant Fiber Sciences in China, 2009,31(5):313-316.
[14] 申香英, 唐文峰. 短流程嵌入式高支苎麻复合纺纱技术探索[J]. 中国麻业科学, 2016,38(3):121-124.
SHEN Xiangying, TANG Wenfeng. Technology research on insert high-count ramie composite spinning of short process[J]. Plant Fiber Sciences in China, 2016,38(3):121-124.
[15] 方磊, 严桂香. 嵌入纺在苎麻纺纱中的应用探讨[C]// 第31届全国毛纺年会论文集. 北京:中国纺织工程学会, 2011: 72-75.
FANG Lei, YAN Guixiang. Application of embedded spinning technology in ramie spinning[C]// The Thirty-First Annual National Wool Textile Annual Meeting. Beijing: China Textile Engineering Society, 2011: 72-75.
[16] 徐卫林, 夏治刚, 丁彩玲, 等. 高效短流程嵌入式复合纺纱技术原理解析[J]. 纺织学报, 2010,31(6):29-36.
XU Weilin, XIA Zhigang, DING Cailing, et al. Analyzing principle of high-efficiency and shortened-process embedding spinning technology[J]. Journal of Textile Research, 2010,31(6):29-36.
[17] XU W, XIA Z, WANG X, et al. Embeddable and locatable spinning[J]. Textile Research Journal, 2011,81(3):223-229.
doi: 10.1177/0040517510380780
[18] 熊伟, 赵阳. 高效短流程嵌入式纺纱的综合分析[J]. 纺织器材, 2009,36(3):52-56.
XIONG Wei, ZHAO Yang. Analysis of speedy short flow imbedded spinning process[J]. Textil Accessories, 2009,36(3):52-56.
[19] XIA Z, ZHANG M, QIU W, et al. Reducing ring spun yarn properties via spinning with a contact surface[J]. Fibers and Polymers, 2012,13(5):670-674.
doi: 10.1007/s12221-012-0670-2
[20] XIA Z, WANG X, HUANG J, et al. A study of influence of the delivery rubber rooler on yarn properties[J]. Textile Research Journal, 2011,81(14):1477-1483.
doi: 10.1177/0040517511399964
[21] XIA Z, XU W, WANG X. Improving fiber trapping with a contact surface during the ring twisting of two cotton yarns[J]. Textile Research Journal, 2012,82(3):272-279.
doi: 10.1177/0040517511426611
[22] 夏治刚. 湿热对纤维素纤维拉伸性能的影响及其在光洁成纱中的应用[D]. 上海:东华大学, 2012: 6-8.
XIA Zhigang. Moisture and temperature influenece on cellulose textile fibers' tensile properties and its application in smomth yarn production[D]. Shanghai: Donghua University, 2012: 6-8.
[1] PANG Yali, MENG Jiayi, LI Xin, ZHANG Qun, CHEN Yankun. Preparation of graphene fibers by wet spinning and fiber characterization [J]. Journal of Textile Research, 2020, 41(09): 1-7.
[2] YUE Chengfei, DING Changkun, LI Lu, CHENG Bowen. Carbodiimide / hydroxysuccinimide crosslinking modification and properties of collagen fibers [J]. Journal of Textile Research, 2020, 41(03): 1-7.
[3] OUYANG Pengfei, ZHANG Yufang, JIA Chunzi, ZHANG Jiayu. Properties of regenerated fibers from bamboo pulp / ionic liquid combined system [J]. Journal of Textile Research, 2020, 41(01): 21-25.
[4] LI Zhenqun, XU Duo, WEI Chunyan, QIAN Yongfang, LÜ Lihua. Preparation of cotton stalk bast cellulose / graphene oxide fiber and its mechanical properties and adsorption capacity [J]. Journal of Textile Research, 2020, 41(01): 15-20.
[5] XU Duo, WEI Jiang, MEI Jianxiang, ZHANG Xinling, ZHANG Youqing, XU Weilin, LIU Keshuai. Properties of soft-spun viscose hard-twist yarn and fabric thereof [J]. Journal of Textile Research, 2019, 40(10): 48-55.
[6] . Appearance and performance of linen / colored polyester wrapping composite yarn [J]. Journal of Textile Research, 2019, 40(08): 40-47.
[7] . Preparation and properties of anti-bacterial, anti-mite and anti-mildew functional modified viscose fibers [J]. Journal of Textile Research, 2019, 40(07): 19-23.
[8] . Structure and performances of double channel digital ring spinning melange yarn [J]. Journal of Textile Research, 2018, 39(11): 27-32.
[9] . Preparation and properties of collagen/high-molecular weight chitosan composite fibers [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(05): 8-13.
[10] . Influence of filament distribution pattern on properties of composite yarns [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(09): 32-39.
[11] . Preparation and characterization of drug-loading regenerated bacterial cellulose fiber [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(05): 14-18.
[12] . Preparation of keratin/multi-walled carbon nanotubes composite fibers [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(02): 21-25.
[13] . Molecular interactions and characterization of sodium alginate / antarctic krill protein / polyvinyl alcohol composite fiber [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(02): 7-13.
[14] . Preparation and property research of regenerated silk fibroin filaments using CaCl2-formid acid system [J]. Journal of Textile Research, 2016, 37(2): 1-6.
[15] . Preparation of long-afterglow luminescence regenerated cellulose fiber [J]. JOURNAL OF TEXTILE RESEARCH, 2016, 37(12): 1-5.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!