Journal of Textile Research ›› 2019, Vol. 40 ›› Issue (03): 125-132.doi: 10.13475/j.fzxb.20180102208

• Dyeing and Finishing & Chemicals • Previous Articles     Next Articles

Preparation of cobalt aluminate/ceramic honeycomb catalyst and application thereof in dye wastewater treatment

ZHANG Lanhe1,2(), ZHANG Mingshuang1, GAO Weiwei1, LI Zheng1, JIA Yanping1, GAO Min3, LING Liangxiong1   

  1. 1. College of Chemical Engineering, Northeast Electric Power University, Jilin, Jilin 132012, China
    2. Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University,Changchun, Jilin 130118, China
    3. Beijing Agro-Biotechnology Research Center, Beijing 100089, China
  • Received:2018-01-10 Revised:2018-11-08 Online:2019-03-15 Published:2019-03-15

Abstract:

In order to increase the catalytic efficiency of advanced wastewater treatment by catalytic ozonation, cobalt aluminate(CoAl2O4)/ceramic honeycomb (CH) catalyst was prepared by a coating method. The influence of coating times, the addition amount of catalyst, calcination time and temperature on the catalytic efficiency was investigated to optimize the preparation conditions. The structure of catalysts were analyzed by X-ray diffractometer, field emission scanning electron microscopy and N2-adsorption and desorption. The catalytic performance and mechanisms were evaluated by catalytic ozonation of hydroquinone. The results show that the catalytic efficiency of CoAl2O4/CH is the highest under the conditions of coating for 6 times, calcination temperature of 700 ℃, calcination time of 6 h and molar ratio of Co to Al of 0.4∶5. The specific surface area and pore volume are the highest and reach 45.47 m2/g and 0.05 cm2/g, respectively. Removal rate of hydroquinone is 84.51% and removal rate of COD is 50.60%. The prepared catalysts belong to the spinal structure and the coating has a sponge-like structure. The catalysts maintain high catalytic activity and stability after repeated use for more than 5 times. Therefore, the application is promising.

Key words: cobalt aluminate/ceramic honeycomb catalyst, catalyst, dye wastewater, catalytic ozonation, wastewater treatment

CLC Number: 

  • TQ426.64

Fig.1

Catalytic ozonation process of hydroquinone wastewater"

Tab.1

Orthogonal experiment table"

水平 A B C D
焙烧
温度/℃
焙烧
时间/h
Co与Al
的量比
涂覆次数
1 500 2 0.2∶5 2
2 600 4 0.4∶5 4
3 700 6 0.6∶5 6

Tab.2

Results of orthogonal experiment for catalyst preparation"

试验号 A B C D COD
去除率/%
对苯二酚
去除率/%
1# 500 2 0.2∶5 2 38.69 69.74
2# 600 4 0.4∶5 2 41.97 70.90
3# 700 6 0.6∶5 2 50.38 74.76
4# 600 2 0.6∶5 4 44.20 79.75
5# 700 4 0.2∶5 4 48.07 81.87
6# 500 6 0.4∶5 4 52.30 81.64
7# 700 2 0.4∶5 6 51.61 79.12
8# 600 4 0.6∶5 6 49.20 81.53
9# 500 6 0.2∶5 6 50.39 84.63
COD
去除率
K1 47.13 44.83 45.72 43.68
K2 45.12 46.41 48.63 48.19
K3 50.02 51.02 47.93 50.40
极差 4.90 6.19 2.91 6.72
对苯二酚
去除率
K1 78.67 76.20 78.75 71.80
K2 77.39 78.10 77.22 81.09
K3 78.58 80.34 78.68 81.76
极差 1.28 4.14 1.53 9.96

Fig.2

Influence of O3 concentration on removal rate of hydroquinone and COD"

Fig.3

Influence of CoAl2O4/CH addition amount on removal rate of hydroquinone and COD"

Fig.4

Effect of pH value on removal rate of hydroquinone (a) and COD (b)"

Fig.5

N2 adsorption/desorption isotherms of 1# catalyst (a) and 9# catalyst (b)"

Fig.6

XRD patterns of 1# and 9# CoAl2O4/CH catalysts"

Fig.7

FESEM images of 1# catalyst (a) and 9# catalyst (b)(×20 000)"

Tab.3

Mechanical properties of different catalysts"

催化剂类型 最大压力/N 抗压强度/MPa
蜂窝陶瓷 4 657 12.50
1#催化剂使用前 6 312 16.49
1#催化剂使用后 6 024 16.17
9#催化剂使用前 5 918 15.89
9#催化剂使用后 5 225 14.11

Fig.8

Effect of recycling utilization times of CoAl2O4/CH catalyst on removal rate of hydroquinone"

[1] URBANO V R, MANUERO M G, PEREA M M, et al. Influence of pH and ozone dose on sulfoquinoxaline ozonation[J]. Journal of Environmental Management, 2017,195(2):224-231.
doi: 10.1016/j.jenvman.2016.08.019
[2] 董殿波. 印染废水处理技术研究进展[J]. 染料与染色, 2015,52(4):56-63.
DONG Dianbo. Review on treatment of dyes waste-water[J]. Dyestuffs and Coloration, 2015,52(4):56-63.
[3] BELTRAN F J, RIVAS F J, MONTERODEESPINOSA R. Ozone-enhanced oxidation of oxalic acid in water with cobalt catalysts: 1. homogeneous catalytic ozon-ation[J]. Industrial and Engineering Chemistry Research, 2003,42(14):3210-3217.
doi: 10.1021/ie0209982
[4] 贾艳萍, 姜成, 郭泽辉, 等. 印染废水深度处理及回用研究进展[J]. 纺织学报, 2017,38(8):172-180.
JIA Yanping, JIANG Cheng, GUO Zehui, et al. Research progress on deep treatment and recycling of dye wastewater[J]. Journal of Textle Research, 2017,38(8):172-180.
[5] 李凯歌. 负载型杂多化合物和多组分金属氧化物催化剂的制备及选择氧化性能研究[D]. 长春: 吉林大学, 2014: 1-20.
LI Kaige. Preparation of supported polyoxometalates and multi-component metal oxides catalysts for selective oxidation[D]. Changchun: Jilin University, 2014: 1-20.
[6] 李旭凯, 谢桂红, 郭转弟, 等. 活性炭及其负载活性组分催化臭氧氧化机理[J]. 广东化工, 2012,39(5):334-335.
LI Xukai, XIE Guihong, GUO Zhuandi, et al. Mechanism of catalytic ozonation by activated carbon and supported active component catalyst[J]. Guangdong Chemical, 2012,39(5):334-335.
[7] YOSHIDA H, TAKAGI S. Effects of seed roasting temperature and time on the quality characteristics of sesame (Sesamum indicum) oil[J]. Journal of the Science of Food Agriculture, 2015,75(1):19-26.
doi: 10.1002/(ISSN)1097-0010
[8] 雷利荣, 李友明. 臭氧及催化臭氧氧化法处理制浆废水的研究进展[J]. 中国造纸, 2013,32(5):55-61.
LEI Liring, LI Youming. Research progress of pulp mill effluent treatment with ozonation and catalytic ozonation technology[J]. China Pulp Paper, 2013,32(5):55-61.
[9] 张耀辉, 涂勇, 唐敏, 等. Fe2O3-TiO2-MnO2/Al2O3催化臭氧化催化剂的制备及表征[J]. 中国环境科学, 2016,36(10):3003-3009.
ZHANG Yaohui, TU Yong, TANG Min, et al. Preparation and characterization of Fe2O3-TiO2-MnO2/Al2O3 catalysts[J]. China Environmental Science, 2016,36(10):3003-3009.
[10] 吴玉琪, 吕功煊, 李树本. CoOx改性TiO2光催化剂的制备、优化及其光催化分解水析氢性能研究[J]. 无机化学学报, 2005,21(3):309-314.
WU Yuqi, LÜ Gongxuan, LI Shuben. The preparation, optimization and photocatalytic properties of CoOx modified TiO2 photocatalysts for hydrogen generation from photocatalytic water splitting[J]. Chinese Journal of Inorganic Chemistry, 2005,21(3):309-314.
[11] AGHAMOHAMMADI S, HAGHIGHI M, MALEKI M, et al. Sequential impregnation vs. sol-gel synthesized Ni/Al2O3-CeO2, nanocatalyst for dry reforming of methane: effect of synjournal method and support promotion[J]. Molecular Catalysis, 2017,431(1):39-48.
doi: 10.1016/j.mcat.2017.01.012
[12] 李冰蕊, 潘家豪, 王挺, 等. 用吸附相反应技术制备弱光响应的铈掺杂TiO2复合光催化剂[J]. 纺织学报, 2018,39(5):67-73.
LI Bingrui, PAN Jiahao, WANG Ting, et al. Preparation of weak-light-driven TiO2 composite photocatalysts by adsorption phase synjournal[J]. Journal of Textle Research, 2018,39(5):67-73.
[13] 郭松林, 肖素萍, 陈林. CuMn/ZrAlTi-堇青石蜂窝陶瓷催化氧化法处理含酚废水[J]. 化工环保, 2012,32(4):367-371.
GUO Songlin, XIAO Suping, CHEN Lin. Catalytic oxidation treatment of phenol wastewater using CuMn/ZrAlTi-cordierite hneycomb ceramics[J]. Environmental Protection of Chemical Industry, 2012,32(4):367-371.
[14] ZHAO L, MA J, SUN Z Z, et al. Catalytic ozonation for the degradation of nitrobenzene in aqueous solution by ceramic honeycomb-supported manganese[J]. Applied Catalysis B Environmental, 2008,83(3):256-264.
doi: 10.1016/j.apcatb.2008.02.009
[15] 陈克强. 乙烯砜型活性染料染色废液的臭氧处理及循环利用[J]. 纺织学报, 1994,15(1):34-37.
CHEN Keqiang. Ozone treatment and recycling of vinyl sulfone reactive dyes waste liquid[J]. Journal of Textle Research, 1994,15(1):34-37.
[16] COLINDRES P, MADEIRA Y H, REGUERA E. Removal of reactive black 5 from aqueous solution by ozone for water reuse in textile dyeing processes[J]. Desalination, 2010,258(4):154-158.
doi: 10.1016/j.desal.2010.03.021
[17] 李彤, 杨浩, 杨凯文, 等. 铁-锰-碳微电解法处理对苯二酚废水[J]. 化工环保, 2015,35(2):127-131.
LI Tong, YANG Hao, YANG Kaiwen, et al. Treatment of hydroquinone-containing wastewater by Fe-Mn-C microelectrolysis process[J]. Environmental Protection of Chemical Industry, 2015,35(2):127-131.
[18] 郑可, 周少奇, 杨梅梅. 臭氧降解高浓度腐殖酸动力学[J]. 环境科学, 2012,33(3):879-884.
ZHENG Ke, ZHOU Shaoqi, YANG Meimei. Degradation kinetics of ozone oxidation on high concentration of humic substances[J]. Environmental Science, 2012,33(3):879-884.
[19] 张兰河, 高伟围, 陈子成, 等. Mn-Co/蜂窝陶瓷催化剂制备及催化臭氧化对苯二酚性能[J]. 环境科学, 2018,39(7):3194-3202.
ZHANG Lanhe, GAO Weiwei, CHEN Zicheng, et al. Preparation of Mn-Co/ceramic honeycomb catalyst and its performance on catalytic ozonation of hydro-quinone[J]. Environmental Science, 2018,39(7):3194-3202.
[20] 唐祝兴, 薛君. Fe3O4@Vc磁性纳米材料的合成及其对水中Cu(Ⅱ)的吸附性能研究[J]. 沈阳理工大学学报, 2013,32(6):82-87.
TANG Zhuxing, XUE Jun. A method to produce magnetic ascorbic acid-coated Fe3O4 nanoparticles and the study of removal of Cu (Ⅱ) ions from aqueous solution[J]. Journal of Shenyang Ligong University, 2013,32(6):82-87.
[21] 刘鸿健, 钱杰生. 差示-双波长分光光度法及其应用[J]. 东南大学学报(自然科学版), 1997,27(4):97-100.
LIU Hongjian, QIAN Jiesheng. Differential-dual wavelength spectrophotometry and its application[J]. Journal of Southeast University (Natural Sicence Edition), 1997,27(4):97-100.
[22] POZNYAK T. Microorganisms inactivation by ozone dissolved in aqueous solution: a kinetic study based on bacterial culture lipids unsaturation[J]. Ozone Science and Engineering, 2015,37(2):119-126.
doi: 10.1080/01919512.2014.917947
[23] 潘璐阳, 王树涛, 张兰河, 等. 掺杂型纳米MnO2/Al2O3催化剂的制备及催化臭氧化处理驱油污水二级出水[J]. 硅酸盐通报, 2015,34(8):2260-2266.
PAN Luyang, WANG Shutao, ZHANG Lanhe, et al. Preparation of doped nano-MnO2/Al2O3 catalyst and catalytic ozonation of secondary effluent of oil extraction wastewater for advanced treatment[J]. Bulletin of the Chinese Ceramic Society, 2015,34(8):2260-2266.
[24] 雷利荣, 李友明. 臭氧及催化臭氧氧化法处理制浆废水的研究进展[J]. 中国造纸, 2013,32(5):55-61.
LEI Lirong, LI Youming. Research progress of pulp mill effluent treatment with ozonation and catalytic ozonation technology[J]. China Pulp Paper, 2013,32(5):55-61.
[25] LI X, LIN J, LIN J, et al. Protective effects of dihydromyricetin against ·OH induced mesenchymal stem cells damage and mechanistic chemistry[J]. Molecules, 2016,21(5):604-610.
doi: 10.3390/molecules21050604
[26] LIU S, SONG H, WEI S, et al. Effect of direct electrical stimulation on decolorization and degradation of azo dye reactive brilliant red X-3B in biofilm-electrode reactors[J]. Biochemical Engineering Journal, 2015,93(2):294-302.
doi: 10.1016/j.bej.2014.11.002
[27] GLAZE W H, KANG J W. Advanced oxidation process, description of a kinetic model for the oxidation of hazardous materials in aqueous media with ozone and hydrogen peroxide[J]. Industrial Engineering Chemistry Research, 1989,28(11):134-142.
[28] LANGLARIS B, RECKHOW D A, BRINK D R. Ozone in water treatment: application and engineering, cooperative research report[J]. Journal of Environmental Quality, 1991,20(34):881-882.
[29] 张兰河, 高伟围, 陈子成, 等. CoAl2O4/蜂窝陶瓷催化剂的制备及其催化臭氧化性能[J]. 无机化学学报, 2017,33(6):985-992.
ZHANG Lanhe, GAO Weiwei, CHEN Zicheng, et al. CoAl2O4/ceramic honeycomb catalyst: preparation and performance on catalytic ozonation in wastewater treatment[J]. Chinese Journal of Inorganic Chemistry, 2017,33(6):985-992.
[30] KAN J, DENG L, LI B, et al. Performance of Co-doped Mn-Ce catalysts supported on cordierite for low concentration chlorobenzene oxidation[J]. Applied Catalysis A General, 2016,530(1):21-29.
doi: 10.1016/j.apcata.2016.11.013
[1] QIAN Yifan, ZHOU Tang, ZHANG Liying, LIU Wanshuang, FENG Quan. Preparation of polyacrylonitrile / cellulose acetate / TiO2 composite nanofiber membrane and its photocatalytic degradation performance [J]. Journal of Textile Research, 2020, 41(05): 8-14.
[2] CUI Guixin, DONG Yongchun, WANG Peng. Preparation and application properties of wool-Fe complex-based heterogeneous Fenton photocatalysts [J]. Journal of Textile Research, 2019, 40(12): 68-73.
[3] ZHUANG Shuai, YANG Hai, AN Jibin, HU Qian, ZHANG Hao, HE Guitian, YI Bing. Degradation kinetics and mechanism of Acid Red 37 under attack of sulfate radicals [J]. Journal of Textile Research, 2019, 40(11): 131-139.
[4] SHI Xiaoping, LI Yao, PAN Jiahao, WANG Ting, WU Liguang. Preparation of visible-light-response TiO2 photocatalyst by hydrothermal reduction [J]. Journal of Textile Research, 2019, 40(10): 105-112.
[5] ZHOU Buguang, WANG Ping, WANG Qiang, FAN Xuerong, YUAN Jiugang. Research progress of horseradish peroxidase in bio-finishing of fiber materials [J]. Journal of Textile Research, 2019, 40(04): 170-176.
[6] SUN Huiping, LÜ Wenzhou. Bentonite supported Zn-Co ozone catalyst for treatment of simulated dye wastewater [J]. Journal of Textile Research, 2019, 40(03): 118-124.
[7] WANG Fengbo, WANG Jiayi, SUN Zheng, MA Yanxue, LÜ Yingzhi, ZHANG Weifeng, LÜ Yan, LÜ Mingming, CHEN Siyu, LI Yuling, CHEN Xiaoguang. Pilot study on treatment of polyacrylate sizing wastewater [J]. Journal of Textile Research, 2019, 40(01): 108-113.
[8] . Synthesis kinetics of polyester by organic titanium-silicon catalysts [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(07): 1-7.
[9] . Application of porphyrin iron/H2O2 system in low temperature bleaching of cotton fabrics [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(06): 75-80.
[10] . Preparation of weak-light-driven TiO2 composite photocatalysts by adsorption phase synthesis [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(05): 67-73.
[11] . Adsorption and visible-light photodegradation of Cu-organic framework to dye wastewater [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(02): 112-118.
[12] . Preparation and photocatalysis of acrylic acid grafted cotton cellulose-based TiO2/C photocatalyst [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(10): 75-80.
[13] . Research progress on deep treatment and recycling of  dye wastewater [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(08): 172-180.
[14] . New automatic and continuous production process of disperse dyes [J]. JOURNAL OF TEXTILE RESEARCH, 2016, 37(11): 80-85.
[15] . Preparation of SBA-3/PEHA and application in wastewater treatment of dyeing [J]. Journal of Textile Research, 2015, 36(07): 83-88.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!