Journal of Textile Research ›› 2019, Vol. 40 ›› Issue (01): 19-25.doi: 10.13475/j.fzxb.20180201607

• Fiber Materials • Previous Articles     Next Articles

Influence of wet/heat treatment on structure and properties of dog hair

LIU Bingqian1, SHENG Dan2, GONG Xiaobao1, CAO Genyang1, ZHANG Tao3()   

  1. 1. State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan, Hubei 430200, China
    2. School of Textiles and Clothing, Jiangnan University, Wuxi, Jiangsu 214122, China
    3. School of Fashion, Wuhan Textile University, Wuhan, Hubei 430073, China
  • Received:2018-02-05 Revised:2018-09-30 Online:2019-01-15 Published:2019-01-18
  • Contact: ZHANG Tao E-mail:zhangtao820@tom.com

Abstract:

In order to better develop and utilize the resources of dog hair, the influences of wet / heat treatment on the structure and properties of dog hair were studied. The dog hair were subjected to heat and wet treatment, respectively, then the fibers were tested by single fiber universal tester, Fourier transform infrared spectroscopy, X-ray diffraction, thermal analyzer, thermal insulation tester and scanning electron microscopy. The results show that the crimp ratio of dog hair decreases after wet treatment, while that of the fiber increases after heat treatment. Heat treatment has much heavier harm to the surface of that fiber than wet treatment, and the mechanical properties of the dog hair are significantly worse after heat treatment. The dog hair has the infrared characteristics of protein fiber, and both of the wet treatment and heat treatment have no obvious influence on its molecular structure, but the secondary structure is affected. The crystallization indexes of samples after wet treatment and heat treatment decrease from 56.87% of untreated sample to 46.21% and 45.92%, respectively, and the heat stability decreases. In addition, the hollow ratio of the wet treated dog hair is decreased obviously and the warm retention ratio is reduced accordingly. However, the hollow ratio of the fibers after heat treatment increases, and the warm retention ratio increases to 96.88%.

Key words: dog hair, wet/heat treatment, crimp ratio, warm retention ratio

CLC Number: 

  • TS102.3

Fig.1

Influence of heat treatment on crimp properties of dog hair. (a) Crimp ratios chiengora; (b) Break elongation"

Fig.2

Stress-strain curves of dog hair before and after wet/heat treatment"

Tab.1

Mechanical properties of chiengora fiber before and after wet / heat treatment"

处理方式 初始模量 断裂强度 断裂功
平均值/(cN·tex-1) CV值/% 平均值/(cN·tex-1) CV值/% 平均值/(cN·cm) CV值/%
未处理 203.79 18.91 18.55 2.16 6.08 25.44
湿处理 165.45 15.80 17.90 8.43 6.91 26.56
热处理 107.67 27.56 16.92 5.89 5.44 23.05

Fig.3

Infrared spectra of dog hair before and after wet/heat treatment"

Fig.4

XRD patterns of dog hair and after wet/heat treatment"

Tab.2

X ray diffraction indexes of dog hair before and after wet/heat treatment"

处理方式 I9/(°) I14/(°) C/%
未处理 422 182 56.87
湿处理 422 227 46.21
热处理 392 212 45.92

Fig.5

TG curves of dog hair before and after wet/heat treatment"

Tab.3

Thermal insulation and thermal conductivity of dog hair layers before and after wet/heat treatment"

处理方式 保暖率/% 导热系数/(W·m-1·℃-1)
未处理 83.75 0.047 6
湿处理 55.79 0.099 7
热处理 96.88 0.037 9

Fig.6

Cross section SEM images of dog hair before and after wet / heat treatment(×5 000)."

[1] 王维, 李伟, 赵伟, 等. 拉细羊毛纤维的特征和产品加工性能[J]. 毛纺科技, 2003,31(5):17-21.
WANG Wei, LI Wei, ZHAO Wei, et al. Characteristics and product processing performance of finer wool fiber[J]. Wool Textile Journal, 2003,31(5):17-21.
[2] 白锦. 拉细羊毛与天然超细支羊毛织物的产品特性分析与比较[J]. 毛纺科技, 2006,34(11):49-51.
BAI Jin. Product characteristics analysis and comparison of fine wool and natural superfine branded wool fabric[J]. Wool Textile Journal, 2006,34(11):49-51.
[3] 孙梅, 沈淦清, 王柏华, 等. 山羊绒形态结构的统计[J]. 纺织学报, 2003,24(1):48-50.
SUN Mei, SHEN Ganqing, WANG Baihua, et al. Statistics of cashmere structure[J]. Journal of Textile Research, 2003,24(1):48-50.
[4] 陈前维, 张一心, 张引, 等. 拉细羊毛的结构形态与性能[J]. 毛纺科技, 2009,37(5):45-49.
CHEN Qianwei, ZHANG Yixin, ZHANG Yin, et al. Structure and properties of fine wool[J]. Wool Textile Journal, 2009,37(5):45-49.
[5] 李亚蓉. 新兴养殖项目:肉狗养殖[J]. 科学种养, 2012(9):52-52.
LI Yarong. The new breeding project:meat dog aquaculture[J]. Scientific Breeding, 2012(9):52-52.
[6] 滑钧凯, 单琪. 宝丝绒的开发与应用研究[J]. 纺织学报, 2003,24(1):50-52.
HUA Junkai, SHAN Qi. Research on the development and application of treasure velvet[J]. Journal of Textile Research, 2003,24(1):50-52.
[7] 林绍建, 兰建武, 吴思碟, 等. 高温及高温水处理对狗毛性能的影响[J]. 毛纺科技, 2011,39(2):46-48.
LIN Shaojian, LAN Jianwu, WU Sidie, et al. Effect of high temperature and high temperature water treat on properties of dog hair[J]. Wool Textile Journal, 2011,39(2):46-48.
[8] 韦玉辉, 宁琳, 吴锦川, 等. 转筒运动方式对羊毛织物起毛起球性能的影响[J]. 毛纺科技, 2017,45(7):26-30.
WEI Yuhui, NING Lin, WU Jinchuan, et al. Effect of rotating-drying model on the pilling of wool fabric drying[J]. Wool Textile Journal, 2017,45(7):26-30.
[9] SEGAL L, GREELY J J, MARTIN A E, et al. An empirical method for estimating the degree of native cystallinity of native cellulose usingthe X-Ray diffractometer[J]. Textile Research Journal, 1959,29(10):786-794.
doi: 10.1177/004051755902901003
[10] 余志金, 龙家杰, 毕潇平, 等. 超临界CO2流体温度对羊毛纤维结构的影响[J]. 毛纺科技, 2012,40(2):7-11.
YU Zhijin, LONG Jiajie, BI Xiaoping, et al. Effect of temperature on the structure of wool fiber in supercritical CO2[J]. Wool Textile Journal, 2012,40(2):7-11.
[11] 刘慧娟, 王琳, 申鼎. 蚕蛹蛋白纤维性能研究[J]. 印染助剂, 2012,29(9):12-14.
LIU Huijuan, WANG Lin, SHEN Ding. Study on the properties of pupa protein fiber[J]. Textile Auxiliaries, 2012,29(9):12-14.
[12] 贾丽霞, 金崇业, 刘瑞, 等. 硅磷杂化阻燃整理对羊毛结构与热稳定性能的影响[J]. 纺织学报, 2017,38(12):101-105.
JIA Lixia, JIN Chongye, LIU Rui, et al. Influence of flame retardant finishing with silicon-phosphorus hybridization on structure and thermal stability of wool[J]. Journal of Textile Research, 2017,38(12):101-105.
doi: 10.1177/004051756803800111
[13] 陈宗良, 李闻欣, 周伟. 超声波技术在羊毛水解中的应用[J]. 毛纺科技, 2008,36(10):1-5.
CHEN Zongliang, LI Wenxin, ZHOU Wei. The application of ultrasonic technology in the hydrolysis of wool[J]. Wool Textile Journal, 2008,36(10):1-5.
[14] 王小丽, 刘洪玲, 于伟东. 狗毛和兔毛二级结构及其表面性能研究[J]. 上海纺织科技, 2015,43(11):54-58.
WANG Xiaoli, LIU Hongling, YU Weidong. The secondary structure and surface properties of dog hairs and rabbit hairs[J]. Shanghai Textile Science & Technology, 2015,43(11):54-58.
[15] 陈改君, 朱若英, 谢丰, 等. 湿蒸对羊毛微观结构的影响[J]. 毛纺科技, 2016,44(4):30-34.
CHEN Gaijun, ZHU Ruoying, XIE Feng, et al. Wet steaming effect on microstructure of wool[J]. Wool Textile Journal, 2016,44(4):30-34.
[16] 张恒, 李戎, 王魁, 等. 还原法与离子液体溶解法制备羊毛角蛋白膜[J]. 纺织学报, 2015,36(6):55-59.
ZHANG Heng, LI Rong, WANG Kui, et al. Preparation of wool keratin membranes prepared by ionic liquid method and reduction C method[J]. Journal of Textile Research, 2015,36(6):55-59.
doi: 10.1177/004051756603600107
[17] 杨陈. 紫外线辐照对羊毛纤维性能的影响[J]. 毛纺科技, 2015,43(12):1-5.
YANG Chen. Influence of performance of wool fiber treated by ultraviolet radiation[J]. Wool Textile Journal, 2015,43(12):1-5.
[1] XING Lijuan, LIU Xinjin, SU Xuzhong, CAO Xiuming. Evaluation on comprehesive physical properties of special animal fibers based on gray clustering [J]. Journal of Textile Research, 2019, 40(01): 26-31.
[2] . Optimum oxidation bleaching condition and spinnability of black yak wool [J]. JOURNAL OF TEXTILE RESEARCH, 2016, 37(07): 49-54.
[3] . Theoretical recognition accuracy and error rate for cashmere based on scale pattern gene code [J]. JOURNAL OF TEXTILE RESEARCH, 2014, 35(4): 5-0.
[4] .  Distribution and correlation of scale pattern gene codes for cashmere [J]. JOURNAL OF TEXTILE RESEARCH, 2014, 35(3): 1-0.
[5] .  Constitution and correlation of scale pattern gene codes for identification of cashmere [J]. JOURNAL OF TEXTILE RESEARCH, 2013, 34(4): 1-5.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!