Journal of Textile Research ›› 2019, Vol. 40 ›› Issue (03): 32-38.doi: 10.13475/j.fzxb.20180202207

• Fiber Materials • Previous Articles     Next Articles

Comparison between structure and performance of fresh cocoon raw silk and dry cocoon raw silk and identification method thereof

LI Bing1(), GE Guoping1, GUO Wei1, DONG Yongchun2, CHEN Xingcan1   

  1. 1. Inspection and Quarantine Technology Center, Guangxi Entry-Exit Inspection and Quarantine Bureau,Nanning, Guangxi 530021, China
    2. School of Textile Science and Engineering,Tianjin Polytechnic University, Tianjin 300387, China
  • Received:2018-02-06 Revised:2018-08-17 Online:2019-03-15 Published:2019-03-15

Abstract:

In order to identify fresh cocoon raw silk and dry cocoon raw silk, the surface morphology and structure properties of the two kinds of raw silk were characterized and compared by using electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction, and thermal gravimetric analysis and contact angle test, respectively, and then on the basis of the difference between their surface properties, an relatively simple and accuracy identification method for the two kinds of raw silk was established. The results indicated that the two kind of raw silk have the similar chemical composition, p-sheet conformation and thermal decomposition curves. However, compared with dry cocoon raw silk, fresh cocoon raw silk has a more uneven surface and a bigger gap between single fibers. Additionally, it showed less crystallinity and better hydrophilicity than dry cocoon raw silk. The two kinds of raw silk were efficiently identified using a method based on determination of their settling times in sodium dodecyl benzene sulfonate aqueous solution. The accurate rates of this method are as high as 100% for fresh cocoon raw silk and near 80% for dry cocoon raw silk, respectively.

Key words: cocoon raw silk, fresh cocoon, dry cocoon, surface structure, hydrophilicity, identification

CLC Number: 

  • TS143.2

Fig.1

SEM images of two kinds of raw silk. (a)Dry cocoon raw silk(×1 000);(b)Fresh cocoon raw silk(×1 000);(c)Dry cocoon raw silk(×1 800);(d)Fresh cocoon raw silk(×1 800)"

Fig.2

FT-IR spectra of fresh cocoon silk and dry cocoon silk"

Fig.3

XRD spectra of fresh cocoon silk (a) and dry cocoon silk (b)"

Fig.4

Thermal analysis curves of fresh cocoon silk and dry cocoon silk. (a)TGA curves;(b)DTG curves"

Fig.5

Comparison on water contact angle of fresh cocoon raw silk b (a) and dry cocoon raw silk g (b)"

Tab.1

Comparison on water contact angle of two kinds of raw silk(°)"

样品编号 接触角 样品编号 接触角
鲜茧生丝a 38.4 干茧生丝e 50.5
鲜茧生丝b 31.9 干茧生丝f 49.8
鲜茧生丝c 32.5 干茧生丝g 53.0
鲜茧生丝d 37.9 干茧生丝h 48.7

Tab.2

Settling time of two kinds of raw silk in SDBS solutions with different concentrations"

SDBS浓度/
(mmol·L-1)
纤维根数 沉降时间/s SDBS浓度/
(mmol·L-1)
纤维根数 沉降时间/s
鲜茧生丝 干茧生丝 鲜茧生丝 干茧生丝
0 4 >600 >600 2.5 4 45 >600
12 >600 >600 12 49 >600
20 >600 >600 20 19 >600
28 >600 >600 28 22 285
36 >600 >600 36 49 53
0.5 4 42 >600 3.5 4 46 >600
12 46 >600 12 35 >600
20 17 >600 20 22 352
28 13 >600 28 38 114
36 36 >600 36 43 51
1.0 4 41 >600 5.0 4 62 >600
12 45 >600 12 32 78
20 18 >600 20 27 67
28 16 >600 28 47 52
36 40 >600 36 27 50

Tab.3

Settling time of 26 kinds of commercial raw silk"

鲜茧
生丝编号
时间/
s
判定 准确
干茧
生丝编号
时间/
s
判定 准确
1 21 鲜茧 1 >600 干茧
2 46 鲜茧 2 >600 干茧
3 122 鲜茧 3 >600 干茧
4 68 鲜茧 4 215 鲜茧
5 146 鲜茧 5 >600 干茧
6 69 鲜茧 6 >600 干茧
7 43 鲜茧 7 >600 干茧
8 19 鲜茧 8 >600 干茧
9 46 鲜茧 9 187 鲜茧
10 72 鲜茧 10 >600 干茧
11 115 鲜茧 11 >600 干茧
12 132 鲜茧 12 226 鲜茧
13 154 鲜茧 13 >600 干茧
[1] 陈文兴, 傅雅琴. 蚕丝加工工程[M]. 北京: 中国纺织出版社, 2013: 22-23.
CHEN Wenxing, FU Yaqin. Silk Processing Engi-neering, [M]. Beijing: China Textile & Apparel Press, 2013: 22-23.
[2] 龙辉, 罗志祥, 谢钧, 等. 广西鲜茧缫丝现状分析[J]. 中国纤检, 2014(15):24-27.
LONG Hui, LUO Zhixiang, XIE Jun, et al. Analysis of Guangxi fresh cocoon silk reeling situation[J]. China Fiber Inspection, 2014(15):24-27.
[3] 黄继伟, 洪基武, 林海涛, 等. 鲜茧缫生丝与干茧缫生丝的性能对比[J]. 丝绸, 2013,50(11):28-32.
HUANG Jiwei, HONG Jiwu, LIN Haitao, et al. Contrast on properties of the fresh cocoon silk and the dried cocoon silk[J]. Journal of Silk, 2013,50(11):28-32.
[4] 章琪超, 江文斌, 傅雅琴. 鲜茧生丝与干茧生丝的结构性能差异研究[J]. 现代纺织技术, 2015,23(1):1-5.
ZHANG Qichao, JIANG Wenbin, FU Yaqin. Research on difference of fresh cocoon raw silk and dried cocoon raw silk in structure and performance[J]. Advanced Textile Technology, 2015,23(1):1-5.
[5] 乔铁军, 王仑, 张秀琍, 等. 干茧丝与鲜茧丝抱合指标的差异性实验与分析[J]. 丝绸, 2009(10):32-33.
QIAO Tiejun, WANG Lun, ZHANG Xiuli, et al. The cohesive force difference experiment and analysis between drying-cocoon silk and fresh-cocoon silk[J]. Journal of Silk, 2009(10):32-33.
[6] 王聪磊. 鲜茧生丝的微量组分及焙烘影响初探[D]. 杭州:浙江理工大学, 2017: 23-25.
WANG Conglei. Preliminary study on the compositions and effect of baking treatment on trace components of fresh reeling silk[D]. Hangzhou: Zhejiang Sci-Tech University, 2017: 23-25.
[7] FREDDI G, TSUKADA M, BERETTA S. Structure and physical properties of silk fibroin/polyacrylamide blend films[J]. Journal of Applied Polymer Science, 2015,71(10):1563-1571.
[8] LU Q, ZHANG B, LI M, et al. Degradation mechanism and control of silk fibroin[J]. Biomacromolecules, 2011,12(4):1080-1086.
pmid: 21361368
[9] 谢孟峡, 刘媛. 红外光谱酰胺Ⅲ带用于蛋白质二级结构的测定研究[J]. 高等学校化学学报, 2003,24(2):226-231.
XIE Mengxia, LIU Yuan. Studies on amide III infrared bands for the secondary structure determination of proteins[J]. Chemical Journal of Chinese Universities, 2003,24(2):226-231.
[10] HERMANS P H, WEIDINGER A. Quantitative investigation of the X-ray diffraction picture of some typical rayon specimens: part I[J]. Textile Research Journal, 1961,31(6):558-571.
[11] LING S, QI Z, KNIGHT D P, et al. Synchrotron FTIR microspectroscopy of single natural silk fibers[J]. Biomacromolecules, 2011,12(9):3344-3349.
doi: 10.1021/bm2006032 pmid: 21790142
[12] LOTZ B, COLONNA C F. The chemical structure and the crystalline structures of Bombyx mori silk fibroin[J]. Biochimie, 1979,61(2):205-14.
doi: 10.1016/s0300-9084(79)80067-x pmid: 465571
[13] KOMATSU K. Chemistry and structure of silk[J]. Japan Agricultural Research Quarterly, 1979,13:64-72.
[14] LU Q, HU X, WANG X, et al. Water-insoluble silk films with silk I structure[J]. Acta-biomaterialia, 2010,6(4):1380-1387.
doi: 10.1016/j.actbio.2009.10.041 pmid: 19874919
[15] RUSA C C, BRIDGES C, HA S W, et al. Conformational changes induced in bombyx mori silk fibroin by cyclodextrin inclusion complexation[J]. Macromolecules, 2005,38(13):5640-5646.
[16] FREDDI G, TSUKADA M, BERETTA S. Structure and physical properties of silk fibroin/polyacrylamide blend films[J]. Journal of Applied Polymer Science, 2015,71(10):1563-1571.
[1] AN Na, ZHANG Jianlei, CHENG Longdi. Impact of fast fashion brand image on purchasing intention [J]. Journal of Textile Research, 2020, 41(08): 108-114.
[2] YAN Jing, ZHANG Xun, LEI Guangzhen, FAN Xuerong. Analysis on blue dyes in She costumes by ultrahigh performance liquid chromatography-diode array detection-tandem mass spectrometry [J]. Journal of Textile Research, 2019, 40(09): 128-135.
[3] WEI Zihan, LI Wenxia, DU Yujun, MA Jingwen, ZHENG Jiahui. Establishment and application of fabrics attenuated total reflection Fourier transform infrared spectroscopy spectrum library [J]. Journal of Textile Research, 2019, 40(08): 64-68.
[4] ZHANG Huan, YAN Jun, WANG Xiaowu, JIAO Andong, LI Hong, ZHENG Laijiu, HE Tingting. Application of low temperature plasma in surface modification of polyester fiber [J]. Journal of Textile Research, 2019, 40(07): 103-107.
[5] XU Yang, LI Ang'ang, SHENG Xiaowei, SUN Zhijun. Noise source identification of high-speed motion mechanism of textile equipment based on near-field acoustic holography method [J]. Journal of Textile Research, 2019, 40(04): 129-134.
[6] XING Wenyu, DENG Na, XIN Binjie, YU Chen. Identification of wool and cashmere based on multi-feature fusion image analysis technology [J]. Journal of Textile Research, 2019, 40(03): 146-152.
[7] JIA Huiying, JIANG Zhiqing, MA Jianwei, JIANG Liang, CHEN Shaojuan. Preparation and properties of modified polytetrafluoroethylene fiber by oxidation self-polymerization of dopamine [J]. Journal of Textile Research, 2019, 40(01): 14-18.
[8] . Qualitative identification of textile chemical composition based on hyperspectral imaging system [J]. Journal of Textile Research, 2018, 39(10): 50-57.
[9] . Intelligent determination of blending fiber for polytrimethylene terephthalate and polybutylene terephthalate [J]. Journal of Textile Research, 2018, 39(09): 169-175.
[10] . Noise source identification of carpet tufting machine based on empirical mode decomposition and energy characteristics [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(08): 138-143.
[11] . Single component textile identification based on continuous projection algorithm and least squares support vector machine [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(08): 46-51.
[12] . Effect of modified by β-cyclodextrin derivatives of aldehydes crosslinked chitosan on hydrophilicity of polyester fabric [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(07): 82-88.
[13] . Model establishment and validation of waste polyester fiber products based on near infrared quantitative analysis [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(07): 63-68.
[14] . Discrimination of goose down and duck down based on electronic-nose [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(04): 19-23.
[15] . Iedntification of cashmere and wool based on convolutional neuron networks and deep learning theory [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(12): 150-156.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!