Journal of Textile Research ›› 2019, Vol. 40 ›› Issue (04): 170-176.doi: 10.13475/j.fzxb.20180300407

• Comprehensive Review • Previous Articles     Next Articles

Research progress of horseradish peroxidase in bio-finishing of fiber materials

ZHOU Buguang, WANG Ping(), WANG Qiang, FAN Xuerong, YUAN Jiugang   

  1. Key Laboratory of Eco-Textiles (Jiangnan University), Ministry of Education, Wuxi, Jiangsu 214122, China
  • Received:2018-03-01 Revised:2018-12-12 Online:2019-04-15 Published:2019-04-16
  • Contact: WANG Ping E-mail:wxwping@163.com

Abstract:

Considering the defects that chemical finishing on fiber materials has large energy consumption and potential fiber damages, enzymatic finishing of fiber materials under mild treating conditions were suggested. The oxidation mechanism of the ternary catalyst system of horseradish peroxidase (HRP), hydrogen peroxide (H2O2) and β-diketone initiator acetylacetone (ACAC) were introduced, and its applications in bio-modifications of starch size, jute, silk protein were reviewed as follows. Methyl acrylate was graft copolymerized with starch to improve its film forming property onto the hydrophobic fibers. Acrylamide and hexafluorobutyl methacrylate were applied to modify jute fiber by enzymatic graft-copolymerization, respectively, realizing the hydrophilic or hydrophobic modification of jute fiber. Acrylic acid was used to enzymatically graft copolymerized onto silk fibroin to enhance the biomimetic mineralization effect of fibroin-based biomaterial. Furthermore, HRP-mediated graft copolymerization of methyl methacrylate onto silk sericin was also investigated to improve the formability of sericin-based biomaterials. In conclusion, HRP exhibits potential applications in bio-finishing of textile fibers and preparation of biomaterials.

Key words: horseradish peroxidase, ternary catalyst system, vinyl monomer, starch, jute, silk protein, biomaterial

CLC Number: 

  • TS195.5

Fig.1

Catalytic mechanism of HRP/H2O2/ACAC"

Fig.2

Schematic illustration of grafting reaction of MA onto starch catalyzed by HRP"

Fig.3

Schematic illustration of HRP-catalyzed graft copolymerization of AM onto lignin of jute fabrics"

Fig.4

HRP-catalyzed graft copolymerization of hydrophobic vinyl monomers onto jute. (a) Generation of free radicals from vinyl monomers; (b) Generation of free radicals from lignin in jute; (c) Graft copolymerization of vinyl monomers onto jute"

Fig.5

Intermolecular cross-linking of silk fibroins initiated by HRP"

Fig.6

Schematic illustration of SF-g-PAA produced by HRP-catalyzed graft copolymerization of AA onto silk fibroins"

[1] 张朝辉, 徐珍珍, 刘新华, 等. 乙酰乙酸酯化淀粉浆料的制备及其性能[J]. 纺织学报, 2017,38(11):68-72.
ZHANG Chaohui, XU Zhenzhen, LIU Xinhua, et al. Preparation and properties of acetoacetylated starch used as sizing agent[J]. Journal of Textile Research, 2017,38(11):68-72.
[2] 彭文芳. 黄麻纤维的性能研究及服用产品开发[J]. 陕西纺织, 2007,74(2):37-38.
PENG Wenfang. Study on the properties of jute fiber and its taking product development[J]. Shaanxi Textile, 2007,74(2):37-38.
[3] WANG P, YU M, CUI L, et al. Modification of Bombyx mori silk fabrics by tyrosinase-catalyzed grafting of chitosan[J]. Engineering in Life Sciences, 2014,14(2):211-217.
[4] LEE J S, KUMAR R N, ROZMAN H D, et al. Pasting, swelling and solubility properties of UV unitiated starch-graft-poly(AA)[J]. Food Chemistry, 2005,91(2):203-211.
[5] 石开仪, 孔德顺, 唐帅, 等. 玉米淀粉的接枝改性及其在煤泥水沉降中的应用[J]. 选煤技术, 2016(3):10-13.
SHI Kaiyi, KONG Deshun, TANG Shuai, et al. Graft modification of corn starch and its application in coal slurry sedimentation[J]. Coal Preparation Technology>, 2016(3):10-13.
[6] SEVER K, SARIKANAT M, SEKI Y, et al. Surface treatments of jute fabric: the influence of surface characteristics on jute fabrics and mechanical properties of jute/polyester composites[J]. Industrial Crops and Products, 2012,35:22-30.
[7] MOHANTY A K, KHAN M A, HINRICHSEN G. Surface modification of jute and its influence on performance of biodegradable jute-fabric/Biopol composites[J]. Composites Science and Technology, 2000,60:1115-1124.
[8] ZHANG Y Q, ZHOU W L, SHEN W D, et al. Synjournal, characterization and immunogenicity of silk fibroin-L-asparaginase bioconjugates[J]. Journal of Biotechnology, 2005,120:315-326.
pmid: 16102867
[9] IMSOMBUT T, SRISUWAN Y, SRIHANAM P, et al. Genipin-cross-linked silk fibroin microspheres prepared by the simple water-in-oil emulsion solvent diffusion method[J]. Powder Technolgy, 2010,203:603-608.
[10] TSUKADA M, KASAI N, FREDDI G. Structural analysis of methyl methacrylate-grafted silk fibers[J]. Journal of Applied Polymer Science, 1993,50(5):885-890.
[11] HONG Y, ZHU X, WANG P, et al. Tyrosinase-mediated construction of a silk fibroin/elastin nanofiber bioscaffold[J]. Applied Biochemistry and Biotechnology, 2016,178(7):1363-1376.
doi: 10.1007/s12010-015-1952-0 pmid: 26679706
[12] NIGEL C V. Horseradish peroxidase: a modern view of a classic enzyme[J]. Phytochemistry, 2004,65:249-259.
pmid: 14751298
[13] 韩哲勇, 厉瑾, 宋锡瑾, 等. 辣根过氧化物酶的新型包埋及活性研究[J]. 浙江大学学报(工学版), 2013(1):182-187.
HAN Zheyong, LI Jin, SONG Xijin, et al. Novel encapsulation of horseradish peroxidase and its acti-vity[J]. Journal of Zhejiang University (Engineering Science Edition)>, 2013(1):182-187.
[14] 杨绍明, 陈延胜, 李瑞琴, 等. 一步电沉积法构建辣根过氧化物酶传感器[J]. 应用化学, 2015,32(7):849-854.
YANG Shaoming, CHEN Yansheng, LI Ruiqin, et al. One-step preparation of horseradish peroxidase biosensor via electrodeposition[J]. Chinese Journal of Applied Chemistry, 2015,32(7):849-854.
[15] KIM Y J, SHIBATA K, UYAMA H, et al. Synjournal of ultrahigh molecular weight phenolic polymers by enzymatic polymerization in the presence of amphiphilic triblock copolymer in water[J]. Polymer, 2008,49(22):4791-4795.
[16] SINGH A, KAPLAN D L. Enzyme-based vinyl polymerization[J]. Journal of Polymers and the Environment, 2002,10(3):85-91.
[17] 司艺方, 徐冉, 李风亭, 等. 辣根过氧化物酶催化去除水中染料的特性研究[J]. 工业水处理, 2015,35(3):40-43.
SI Yifang, XU Ran, LI Fengting, et al. Removal of dyestuff from water catalyzed by horseradish peroxi-dase[J]. Industrial Water Treatment, 2015,35(3):40-43.
[18] 杨金秋, 邢铁玲, 陈国强. HRP 酶促HEMA接枝蚕丝织物的制备及结构性能测试[J]. 蚕业科学, 2017,43(1):95-101.
YANG Jinqiu, XING Tieling, CHEN Guoqiang. Preparation, structure and property testing of hydroxyethyl methacrylate grafted silk fabric catalyzed by horseradish peroxidase[J]. Science of Sericulture, 2017,43(1):95-101.
[19] 洪伟杰, 张朝晖, 芦国营. 辣根过氧化物酶的结构与作用机制[J]. 生命的化学, 2005,25(1):33-36.
HONG Weijie, ZHANG Chaohui, LU Guoying. Structure and mechanism of horseradish peroxidase[J]. Chemistry of Life, 2005,25(1):33-36.
[20] SINGH A, MA D, KAPLAN D L. Enzyme-mediated free radical polymerization of styrene[J]. Biomacromolecules, 2000,1(4):592-596.
doi: 10.1021/bm005537j pmid: 11710186
[21] ZHAO J, GUO Z, LIANG G, et al. Enzyme-mediated grafting of acrylamide to ultrahigh molecular weight polyethylene fiber: a novel radical initiation system[J]. Journal of Applied Polymer Science, 2005,96(4):1011-1016.
doi: 10.1002/(ISSN)1097-4628
[22] FAN G, ZHAO J, YUAN H, et al. Solvents effect in horseradish peroxidase catalyzed modification of UHMWPE fiber[J]. Journal of Applied Polymer Science, 2006,102(1):674-678.
doi: 10.1002/(ISSN)1097-4628
[23] GAO G, KARAASLAN M A, KADLA J F, et al. Enzymatic synjournal of ionic responsive lignin nanofibres through surface poly(N-isopropylacrylamide) immo-bilization[J]. Green Chemistry, 2014,16(8):3890-3898.
doi: 10.1039/C4GC00757C
[24] 赵凯. 淀粉非化学改性技术[M]. 北京: 化学工业出版社, 2009: 15-30.
ZHAO Kai. Non-chemical Modification Technology of Starch[M]. Beijing: Chemistry Industry Press, 2009: 15-30.
[25] WANG S, WANG Q, FAN X, et al. Synjournal and characterization of starch-poly (methyl acrylate) graft copolymers using horseradish peroxidase[J]. Carbohydrate Polymers, 2016,136:1010-1016.
doi: 10.1016/j.carbpol.2015.09.110 pmid: 26572441
[26] 王苏. 辣根过氧化物酶催化淀粉接枝丙烯酸酯改性研究[D]. 无锡: 江南大学, 2017: 1-20
WANG Su. Grafting modification of starch with acrylate catalyzed by horseradish peroxidase[D]. Wuxi: Jiangnan University, 2017: 1-20
[27] DONG A, YU Y, YUAN J, et al. Hydrophobic modification of jute fiber used for composite reinforcement via laccase-mediated grafting[J]. Applied Surface Science, 2014,301:418-427.
[28] LIU R, DONG A, FAN X, et al. HRP-mediated polyacrylamide graft modification of raw jute fabric[J]. Journal of Molecular Catalysis B: Enzymatic, 2015,116:29-38.
[29] WU H, SILVA C, YU Y, et al. Hydrophobic functionalization of jute fabrics by enzymatic-assisted grafting of vinyl copolymers[J]. Journal of Molecular Catalysis B: New Journal of Chemistry, 2017,41:3773-3780.
[30] 吴慧敏. 黄麻织物酶促接枝疏水化功能改性[D]. 无锡: 江南大学, 2017: 2-30
WU Huimin. Functional modification of jute fabrics catalyzed by enzymes[D]. Wuxi: Jiangnan University, 2017: 2-30
[31] 刘锐锐. HRP酶催化黄麻织物接枝改性[D]. 无锡: 江南大学, 2016: 15-22.
LIU Ruirui. Grafting modification of jute fabrics catalyzed by HRP enzyme[D]. Wuxi: Jiangnan University, 2016: 15-22.
[32] ZHOU B G, WANG P, CUI L, et al. Self-crosslinking of silk fibroin using H2O2-horseradish peroxidase system and the characteristics of the resulting fibroin membranes[J]. Applied Biochemistry and Biotechnology, 2017,182:1548-1563.
doi: 10.1007/s12010-017-2417-4 pmid: 28138929
[33] ZHOU B, HE M, WANG P, et al. Synjournal of silk fibroin-g-PAA composite using H2O2-HRP and characterization of the in situ biomimetic mineralization behavior[J]. Materials Science and Engineering: C, 2017,81:291-302.
[34] HE M, HU H R, WANG P, et al. Preparation of a bio-composite of sericin-g-PMMA via HRP-mediated graft copolymerization[J]. International Journal of Biological Macromolecules, 2018,117:323-330.
doi: 10.1016/j.ijbiomac.2018.05.190 pmid: 29842956
[1] LI Wei, ZHANG Zhengqiao, WU Lanjuan, XU Zhenzhen, NI Qingqing, LU Yuhao. Preparation of phosphorylated-caproylated starch and its membrane properties [J]. Journal of Textile Research, 2020, 41(10): 81-86.
[2] DUAN Fangyan, WANG Wenyu, JIN Xin, NIU Jiarong, LIN Tong, ZHU Zhengtao. Research progress in formation of starch fibers and their drug-loaded controlled-release [J]. Journal of Textile Research, 2020, 41(10): 170-177.
[3] WANG Zexing, WU Bo, LI Shuai, HE Bin. Energy dissipation evolution of jute fabric / polyethylene composite under cyclic stress relaxation [J]. Journal of Textile Research, 2020, 41(10): 74-80.
[4] LI Wei, ZHANG Zhengqiao, WU Lanjuan, WU Jie, ZHU Zhifeng. Research progress in amphiphilic starch sizing agents [J]. Journal of Textile Research, 2020, 41(07): 182-187.
[5] LI Wei, JING Yuanwei, ZHANG Zhengqiao, NI Qingqing, XU Zhenzhen, LIU Xinhua. Preparation and sizing properties of caproylated starch [J]. Journal of Textile Research, 2020, 41(06): 76-80.
[6] SHEN Yanqin, YANG Shu, WU Hailiang, WANG Zhongliang. Research progress of medium and low temperature water-soluble textile starch size [J]. Journal of Textile Research, 2019, 40(06): 142-151.
[7] . Microwave assisted preparation and sizing properties of carboxymethyl corn starch [J]. Journal of Textile Research, 2018, 39(12): 59-66.
[8] . Adhesion properties of quaternary ammonium cation-esterified dodecenylsuccinic anhydride-etherified starch size [J]. Journal of Textile Research, 2018, 39(12): 67-71.
[9] . Adsorption properties of cross-linked amino starch onto methylene blue [J]. Journal of Textile Research, 2018, 39(11): 103-110.
[10] . Film properties of starch sizing grafted by quaternary ammonium cations [J]. Journal of Textile Research, 2018, 39(11): 68-72.
[11] . Sizing property of cold water soluble potato starch at low temperature [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(03): 79-85.
[12] . Preparation and film properties of electroneutral double-etherified corn starch [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(12): 77-82.
[13] . Synthesis and properties of water soluble quaternary ammonium cationic starch sizing materials [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(11): 73-78.
[14] . Preparation and properties of acetoacetylated starch used as sizing agent [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(11): 68-72.
[15] . Influence of size compatibility on mechanical properties of blended size films [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(10): 65-69.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!