Journal of Textile Research ›› 2019, Vol. 40 ›› Issue (03): 26-31.doi: 10.13475/j.fzxb.20180302906

• Fiber Materials • Previous Articles     Next Articles

Heat transfer property of capric acid-palmitic acid-stearic acid/polyacrylonitrile/boron nitride composite phase change fibrous membranes

KE Huizhen1,2(), LI Yonggui1,2   

  1. 1. Fujian Key Laboratory of Novel Functional Textile Fibers and Materials, Minjiang University, Fuzhou,Fujian 350108, China
    2. Faculty of Clothing and Design, Minjiang University, Fuzhou, Fujian 350108, China
  • Received:2018-03-14 Revised:2018-11-03 Online:2019-03-15 Published:2019-03-15

Abstract:

Electrospun polyacrylonitrile/boron nitride (PAN/BN) composite nanofibrous membranes with different mass ratios were used as supporting materials to overcome the problems of poor thermal conductivity and the leakage problems of capric acid-palmitic acid-stearic acid (CA-PA-SA) ternary eutectic acting as solid-liquid phase change materials. And then innovative CA-PA-SA/PAN/BN composite phase change fibrous membranes were prepared by physical adsorption. The influences of BN nanoparticles with high thermal conductivity on their morphological structure, thermal performance, as well as thermal energy storage and release rates were studied. The scanning electron microscopy images reveals that the morphological structure of CA-PA-SA/PAN/BN composite phase change fibrous membranes are unaffected by the addition of 10 % BN nanoparticles. The differential scanning calorimetry results suggest that the melting temperatures and enthalpies of the prepared composite phase change fibrous membranes are about 25 ℃ and 136.4-138.6 kJ/kg, respectively. Heat transfer test results indicate that the integral heat transfer performance of CA-PA-SA/PAN/BN composite phase change fibrous membranes are improved by virtue of the addition of BN nanoparticles with high thermal conductivity, and their melting and freezing times are shortened about 38% and 41%, respectively.

Key words: composite phase change fibrous membrane, boron nitride, capric acid-palmitic acid-stearic acid ternary eutectic, thermal energy storage property, heat transfer property

CLC Number: 

  • TQ342.94

Fig.1

SEM images of electrospun nanofibrous membranes (×20 000)"

Fig.2

SEM images of composite phase change fibrous membranes (×10 000)"

Fig.3

SEM image of CA-PA-SA/PAN/BN10-cycled composite phase change fibrous membrane(×10 000)"

Fig.4

DSC curves of CA-PA-SA ternary eutectic and composite phase change fibrous membranes"

Tab.1

Thermal performance data of CA-PA-SA ternary eutectic and composite phase change fibrous membranes"

样品 融化温度/
融化焓值/
(kJ·kg-1)
结晶温度/
结晶焓值/
(kJ·kg-1)
CA-PA-SA 25.12 145.7 15.60 144.5
CA-PA-SA/PAN 24.06 138.6 17.17 137.4
CA-PA-SA/PAN/BN5 24.13 137.7 17.39 135.8
CA-PA-SA/PAN/BN10 23.89 136.4 17.50 132.6
CA-PA-SA/PAN/BN10-cycled 26.37 136.2 15.47 133.8

Fig.5

Temperature and time curves of composite phase change fibrous membranes in thermal energy release process (a) and storage process (b)"

[1] BASTANI A, HAGHIGHAT F. Expanding Heisler chart to characterize heat transfer phenomena in a building envelope integrated with phase change materials[J]. Energy and Buildings, 2015,106:164-174.
doi: 10.1016/j.enbuild.2015.05.034
[2] ZHANG SL, WU W, WANG SF. Integration highly concentrated photovoltaic module exhaust heat recovery system with adsorption air-conditioning module via phase change materials[J]. Energy, 2017,118:1187-1197.
doi: 10.1016/j.energy.2016.10.139
[3] FIORETTI R, PRINCIPI P, COPERTARO B. A refrigerated container envelope with a PCM (phase change material) layer: experimental and theoretical investigation in a representative town in central Italy[J]. Energy Conversion and Management, 2016,122:131-141.
doi: 10.1016/j.enconman.2016.05.071
[4] 徐素梅, 哈丽丹·买买提, 米娜瓦尔·乌买尔, 等. 月桂酸纤维素酯/聚乙二醇相变储能纤维的制备及其性能[J]. 纺织学报, 2016,37(4):7-14.
XU Sumei, HALIDAN Maimaiti, MINAWAR Wumaier, et al. Preparation and performance of cellulose lauric acid esters/polyethylene glycal grafted copolymer fibers[J]. Journal of Textile Research, 2016,37(4):7-14.
[5] YUAN YP, ZHANG N, TAO WQ, et al. Fatty acids as phase change materials: a review[J]. Renewable and Sustainable Energy Reviews, 2014,29:482-498.
doi: 10.1016/j.rser.2013.08.107
[6] ZENG JL, ZHU FR, YU SB, et al. Myristic acid/polyaniline composites as form stable phase change materials for thermal energy storage[J]. Solar Energy Materials & Solar Cells, 2013,114:136-140.
[7] CAI YB, GAO CT, XU XL, et al. Electrospun ultrafine composite fibers consisting of lauric acid and polyamide 6 as form-stable phase change materials for storage and retrieval of solar thermal energy[J]. Solar Energy Materials & Solar Cells, 2012,103:53-61.
[8] LI X Y, CHEN H S, LI H Q, et al. Integration of form-stable paraffin/nanosilica phase change material composites into vacuum insulation panels for thermal energy storage[J]. Applied Energy, 2015,159:601-609.
doi: 10.1016/j.apenergy.2015.09.031
[9] WANG S P, QIN P, FANG X M, et al. A novel sebacic acid/expanded graphite composite phase change material for solar thermal medium-temperature applications[J]. Solar Energy, 2014,99:283-290.
doi: 10.1016/j.solener.2013.11.018
[10] DENG Y, LI J H, QIAN T T, et al. Thermal conductivity enhancement of polyethylene glycol/expanded vermiculite shape-stabilized composite phase change materials with silver nanowire for thermal energy storage[J]. Chemical Engineering Journal, 2016,295:427-435.
doi: 10.1016/j.cej.2016.03.068
[11] LOHRASBI S, SHEIKHOLESLAMI M, GANJI D D. Multi-objective RSM optimization of fin assisted latent heat thermal energy storage system based on solidification process of phase change material in presence of copper nanoparticles[J]. Applied Thermal Engineering, 2017,118:430-447.
doi: 10.1016/j.applthermaleng.2017.03.005
[12] QI G Q, YANG J, BAO R Y, et al. Hierarchical graphene foam-based phase change materials with enhanced thermal conductivity and shape stability for efficient solar-to-thermal energy conversion and storage[J]. Nano Research, 2017,10(3):802-813.
doi: 10.1007/s12274-016-1333-1
[13] WANG L J, HAN D B, LUO J, et al. Highly efficient growth of boron nitride nanotubes and the thermal conductivity of their polymer composites[J]. The Journal of Physical Chemistry C, 2018,122:1867-1873.
doi: 10.1021/acs.jpcc.7b10761
[14] KE H Z. Phase diagrams, eutectic mass ratios and thermal energy storage properties of multiple fatty acid eutectics as novel solid-liquid phase change materials for storage and retrieval of thermal energy[J]. Applied Thermal Engineering, 2017,113:1319-1331.
doi: 10.1016/j.applthermaleng.2016.11.158
[15] KE HZ, GHULAM MUH, LI YG, et al. Ag-coated polyurethane fibers membranes absorbed with quinary fatty acid eutectics solid-liquid phase change materials for storage and retrieval of thermal energy[J]. Renewable Energy, 2016,99:1-9.
doi: 10.1016/j.renene.2016.06.033
[16] SARI A, KARAIPEKLI A. Preparation and thermal properties of capric acid/palmitic acid eutectic mixture as a phase change energy storage material[J]. Materials Letters, 2008,62:903-906.
doi: 10.1016/j.matlet.2007.07.025
[17] SARIER N, ONDER E. Organic phase change materials and their textile applications: an overview[J]. Thermochimica Acta, 2012,540:7-60.
doi: 10.1016/j.tca.2012.04.013
[18] MONDAL S. Phase change materials for smart textiles: an overview[J]. Applied Thermal Engineering, 2008,28:1536-1550.
doi: 10.1016/j.applthermaleng.2007.08.009
[1] GUO Xinyue, YANG Zhanping, SONG Xiaomei, XU Yang. Preparation and properties of n-eicosane/cellulose diacetate phase change filter material [J]. Journal of Textile Research, 2019, 40(09): 15-21.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!