Journal of Textile Research ›› 2019, Vol. 40 ›› Issue (03): 71-75.doi: 10.13475/j.fzxb.20180303005

• Textile Engineering • Previous Articles     Next Articles

Preparation and properties of glass fiber/polypropylene fiber reinforced thermoplastic composites

DONG Weiguo1,2()   

  1. 1. School of Textile Science and Engineering, Tianjin Polytechnic University, Tianjin 300387, China
    2. Key Laboratory of Advanced Textile Composites, Ministry of Education, Tianjin Polytechnic University, Tianjin 300387, China
  • Received:2018-03-04 Revised:2018-11-06 Online:2019-03-15 Published:2019-03-15

Abstract:

In order to obtain long fiber reinforced thermoplastic composites with high weight ratios and high degrees of orientation, a stretch-breaking process was adopted to prepare glass fibers (GF) and polypropylene (PP) filaments into bi-component slivers. The slivers were aligned in two perpendicular layers, and the resulted hybrid-fiber was subjected to hot pressing to form GF/PP long fiber reinforced thermoplastic composites. The morphology of the composites was observed, and their static and dynamic mechanical properties were characterized by using the tensile test, bending test, impact test, and dynamic mechanical analysis (DMA). The test results show that glass fibers with an average length of 22.9 mm has high straightness, highly oriented and dispersed in the PP matrix, and accounts for 45.73% of the composites. Glass fibers are fully saturated in the matrix, which provides the composites with a porosity of 1.58%. In comparison of composites prepared by extrusion molding and stretch-breaking process, the latter obtain greater mechanical properties. DMA results show that the glass transition temperature of composites is 73.4 ℃, and the composites retain good thermomechanical properties at 150 ℃ and maintain high storage modulus and small loss factor.

Key words: thermoplastic composite, hybrid fiber preform, glass fiber, polypropylene fiber, mechanical property

CLC Number: 

  • TB322

Fig.1

Schematic diagram of drawing and mixing of two kinds of fiber"

Fig.2

Preparation process diagram of GF/PP thermoplastic composite materials"

Fig.3

Images of GF/PP composite. (a) Cross section(×160); (b) Section after stretch (×600)"

Fig.4

Images of glass fiber mesh in GF/PP composites. (a) After allation; (b) Extrusion molding"

Fig.5

Fiber length distribution plot of glass fiber of GF/PP composites"

Tab.1

Mechanical properties of GF/PP composites"

试样制
备方法
拉伸
强度/
MPa
拉伸
模量/
MPa
弯曲
强度/
MPa
弯曲
模量/
MPa
冲击
强度/
(kJ·m-2)
牵切混纤法 128 8 300 180 9 780 35
挤出模压法 100 7 900 175 8 000 20

Fig.6

DMA curve of GF/PP composites"

[1] 方鲲, 吴丝竹, 张国荣, 等. 长纤维增强热塑性复合材料在汽车零部件上的应用进展[J]. 中国塑料, 2009,23(3):13-18.
FANG Kun, WU Sizhu, ZHANG Guorong, et al. Progress in applications of long fiber reinforced thermoplastics in automotive parts[J]. China Plastics, 2009,23(3):13-18.
[2] CHRISTOPH Schneeberger, JOANNA C H Wong, PAOLO Ermanni, Hybrid bicomponent fibres for thermoplastic composite preforms[J]. Composites Part A, 2017(103):69-73.
[3] SVENSSON Shishoo Gilchrist. Manufacturing of thermoplastic composites from commingled yarns: a review[J]. Journal of Thermoplastic Composite Materials, 1998,11(1):22-56.
doi: 10.1177/089270579801100102
[4] THOMANNY U I, ERMANNI P. The influence of yarn structure and processing conditions on the laminate quality of stampformed carbon and thermoplastic polymer fiber commingled yarns[J]. Journal of Thermoplastic Composite Materials, 2004,17(3):259-283.
doi: 10.1177/0892705704041988
[5] HOUPHOUËT-BOIGNY C, PLUMMER C J G, WAKEMAN M D, et al. Towards textile-based fiber-reinforced thermoplastic nanocomposites: melt spun polypropylene-montmorillonite nanocomposite fibers[J]. Polymer Engineering & Science, 2007,47(7):1122-1132.
[6] 董卫国. 混纤纱复合材料研究进展[J]. 天津工业大学学报, 2006,25(2):22-26.
DONG Weiguo. Review of thermoplastic composites made from commingled yarns[J]. Journal of Tianjin Polytechnic University, 2006,25(2):22-26.
[7] BAGHAEI B, SKRIFVARS M, BERGLIN L. Characterization of thermoplastic natural fibre composites made from woven hybrid yarn prepregs with different weave pattern[J]. Composites Part A, 2015,76(36):154-161.
[8] 朱龙彪, 王昌国, 严晓照, 等. 纤维牵断成条机设计[J]. 纺织学报, 2007,28(12):107-109.
ZHU Longbiao, WANG Changguo, YAN Xiaozhao, et al. Design of fiber stretch-breaking sett frame[J]. Journal of Textile Research, 2007,28(12):107-109.
[9] 刘洋, 季晓雷, 郁崇文, 等. 亚麻牵切中纤维断裂过程和规律的研究[J]. 中国麻业, 2008,30(1):39-43.
LIU Yang, JI Xiaolei, YU Chongwen, et al. Study on the process and principle of stretch-breaking of flax fiber[J]. Plant Fiber Sciences in China, 2008,30(1):39-43.
[10] 陈东, 周秀玲. 锈钢纤维牵切工艺的研究[J]. 棉纺织技术, 2008,36(7):16-19.
CHEN Dong, ZHOU Xiuling. Study on draft cutting processing of stainless steel fibre[J]. Cotton Textile Technology, 2008,36(7):16-19.
[11] 吴绥菊, 郁崇文, 季晓雷. 牵切过程中纤维长度不匀率分析[J]. 纺织学报, 2012,33(3):34-37.
WU Suiju, YU Chongwen, JI Xiaolei. Control of fiber length irregularity in stretch-breaking process[J]. Journal of Textile Research, 2012,33(3):34-37.
[12] BALAJI K T, PILLAY S, NING H, et al. Process simulation, design and manufacturing of a long fiber thermoplastic composite for mass transit application[J]. Composites Part A, 2008(39):1512-1521.
[13] BIJSTERBOSCH H, GAYMANS R J. Polyamide 6-long glass fiber injection moldings[J]. Polymer Composites, 1995,16(5):363-369.
doi: 10.1002/(ISSN)1548-0569
[14] 董卫国, 黄故. 三维机织热塑复合材料的制作与性能[J]. 纺织学报, 2005,26(6):107-108.
DONG Weiguo, HUANG Gu. Manufacture and performance of 3D-woven thermoplastic composite material[J]. Journal of Textile Research, 2005,26(6):107-108.
[15] THOMASON J L, VLUG M A. Influence of fibre length and concentration on the properties of glass fibre-reinforced polypropylene: tensile and flexural modulus[J]. Composites Part A, 1996,27(6):477-84.
[16] AKONDA M H, LAWRENCE C A, WEAGER B M. Recycled carbon fibre-reinforced polypropylene thermoplastic composites[J]. Composites Part A, 2012,43:79-86.
[17] 梁基照. 无机粒子填充聚合物复合材料的储能模量及其表征[J]. 华南理工大学学报 (自然科学版), 2008,36(11):143-146.
LIANG Jizhao. Storage modulus and its characterization of inorganic particulate filled polymer composites[J]. Journal of South China University of Technology(Natural Science Edition), 2008,36(11):143-146.
[18] 薛东, 刘芹, 雷文, 等. 动态力学分析方法在塑木复合材料研究中的应用[J]. 高分子通报, 2013,49(7):73-76.
XUE Dong, LIU Qin, LEI Wen, et al. The application of dynamical mechanical analysis technology in the researches of wood plastic composites[J]. Polymer Bulletin, 2013,49(7):73-76.
[1] PANG Yali, MENG Jiayi, LI Xin, ZHANG Qun, CHEN Yankun. Preparation of graphene fibers by wet spinning and fiber characterization [J]. Journal of Textile Research, 2020, 41(09): 1-7.
[2] ZHAN Xiaoqing, LI Fengyan, ZHAO Jian, LI Haiqiong. Thermal mechanical stability of ultrahigh molecular weight polyethylene fiber#br# [J]. Journal of Textile Research, 2020, 41(08): 9-14.
[3] ZHANG Zhuhui, ZHANG Diantang, QIAN Kun, XU Yang, LU Jian. Weaving process and off-axial tensile mechanical properties of wide-angle woven fabric [J]. Journal of Textile Research, 2020, 41(08): 27-31.
[4] LIU Xi, WANG Dong, ZHANG Liping, LI Min, FU Shaohai. Effect of low refractive resin on structure and properties of spun-dyed viscose fibers [J]. Journal of Textile Research, 2020, 41(07): 9-14.
[5] LI Liping, WU Daoyi, ZHAN Yikai, HE Min. Review on carbon fiber surface modification using electrophoretic deposition of carbon nanotubes and graphene oxide [J]. Journal of Textile Research, 2020, 41(06): 168-173.
[6] WANG Zongqian, YANG Haiwei, ZHOU Jian, LI Changlong. Effect of urea degumming on mechanical properties of silk fibroin aerogels [J]. Journal of Textile Research, 2020, 41(04): 9-14.
[7] DING Fang, REN Xuehong. Flame-retardant finishing of polyester fabrics by grafting phosphorus-nitrogen compounds [J]. Journal of Textile Research, 2020, 41(03): 100-105.
[8] CUI Yifan, HOU Wei, ZHOU Qianxi, YAN Jun, LU Yanhua, HE Tingting. Influence of silk sericin temperature sensitive hydrogel on properties of cotton fabrics [J]. Journal of Textile Research, 2019, 40(12): 74-78.
[9] ZHANG Jiao, GAO Xuefeng, WANG Yuzhou, LIU Haihui, ZHANG Xingxiang. Preparation and properties of polyamide 66/amino-functionalized multi-walled carbon nanotubes fibers [J]. Journal of Textile Research, 2019, 40(11): 1-8.
[10] YANG Fan, LIU Junhua, BIAN Angting, WANG Yanping, QIAN Qiyuan, NI Jianhua, XIA Yumin, HE Yong, WANG Yimin. Influence of heat treatment on structure and properties of thermotropic liquid crystalline polyarylate fiber [J]. Journal of Textile Research, 2019, 40(11): 9-12.
[11] WU Liwei, WANG Wei, LIN Jiahorng, JIANG Qian. Preparation and mechanical properties of aramid/ ultra-high molecular weight polyethylene fabric reinforced polyurethane sandwich composite [J]. Journal of Textile Research, 2019, 40(07): 64-70.
[12] LIU Shuping, LI Liang, LIU Rangtong, CUI Shizhong, WANG Yanting. Structure and properties of keratin film modified by carboxymethyl cellulose sodium [J]. Journal of Textile Research, 2019, 40(06): 14-19.
[13] LIU Jinxin, ZHANG Haifeng, ZHANG Xing, HUANG Chen, ZHENG Xiaobing, JIN Xiangyu. Influence of multistage drawing and heat setting on structure and properties of polyethylene/polypropylene bicomponent fibers [J]. Journal of Textile Research, 2019, 40(05): 24-29.
[14] MO Dajie, LI Xuming, XU Zenghui. Preparation and properties of poly(3-hydroxybutyrate-co-3-hydroxyl valerate)/polylactic acid flame retardant fibersMO [J]. Journal of Textile Research, 2019, 40(05): 12-17.
[15] CAO Haijian, CHEN Hongxia, HUANG Xiaomei. Numerical simulation of side compressive properties on glass fiber/epoxy resin sandwich composite [J]. Journal of Textile Research, 2019, 40(05): 59-63.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!