Journal of Textile Research ›› 2019, Vol. 40 ›› Issue (01): 67-72.doi: 10.13475/j.fzxb.20180303206

• Textile Engineering • Previous Articles     Next Articles

Study on relationship between capillary characteristics and moisture permeability of wool fabrics

ZHANG Wenjuan1, JI Feng1(), ZHANG Ruiyun1, ZHAO Xiaojie1,2, WANG Ni1, WANG Junli3, ZHANG Jianxiang2   

  1. 1. Key Laboratory of Textlie Science & Technology, Ministry of Education, Donghua University, Shanghai 201620, China
    2. Luthai Textile Co., Ltd., Zibo, Shandong 255100, China
    3. Shanghai Challenge Textile Co., Ltd., Shanghai 201504, China
  • Received:2018-03-15 Revised:2018-10-10 Online:2019-01-15 Published:2019-01-18
  • Contact: JI Feng E-mail:jifeng@dhu.edu.cn

Abstract:

In order to investigate on the influence mechanism of the capillary structure on moisture permeability of wool fabrics, empirical models describing the relationship between capillary characteristics and moisture permeability of wool fabrics were built. Three indices of volume porosity, surface porosity and the average pore size were adopted to describe capillary characteristics of wool fabrics from different aspects. And the index of wet resistance was used to represent the moisture permeability of fabrics. For twenty-four types of wool fabric samples, the capillary characteristic indices were measured as well as wet resistance. Finally, polynomial regression analysis was conducted between each capillary characteristic index and the wet resistance index. The obtained empirical relationship curves present similar tendencies. The indices of volume porosity, surface porosity and the average pore size present nonlinear correlations with wet resistance to a certain extent respectively. Along with the growth of each capillary index, the wet resistance first shows positive correlation and then negative correlation. That is, the wet resistance reaches a maximum value in certain regions. For the volume porosity-wet resistance relation curve, the wet resistance reaches maximum when the volume porosity is about 60%. The surface porosity-wet resistance relationship gets clear when surface porosity rises beyond 1.5%, and at about 3% of surface porosity, the wet resistance reaches maximum. Similarly, the wet resistance stops increasing as the average pore size arises to about 45 μm.

Key words: wool fabric, moisture permeability, capillary characteristic, wet resistance

CLC Number: 

  • TS101.9234

Tab.1

Structural parameters of fabric samples"

试样
编号
试样
组织
厚度/
mm
面密度/
(g·m-2)
经纬密度/
(根·(10 cm)-1)
经密 纬密
1 2  2山形斜纹 0.69 233.21 267 197
2 双层接结 0.44 210.87 455 420
3 2  2右斜 0.31 167.87 383 366
4 5  4纬面缎纹 0.38 202.34 367 367
5 2  2左斜纹 0.35 177.49 363 379
6 平纹 0.43 216.63 467 368
7 1  2右斜纹 0.48 224.74 307 284
8 2  2左斜纹 0.35 181.24 189 200
9 37 tex,2  2右斜 0.41 194.56 281 355
10 29 tex×2纬平针 0.98 278.67 94 116
11 29 tex×2纬平针 0.65 200.70 148 160
12 20 tex×2纬平针 0.91 258.64 120 150
13 1+1罗纹 0.82 182.52 114 148
14 14 tex×2纬平针 0.67 184.58 132 182
15 小提花 0.77 217.07 146 132
16 28 tex纬平针 0.64 187.03 148 158
17 17 tex纬平针 0.54 145.19 184 194
18 17 tex×2纬平针 0.68 207.77 132 131
19 绉组织 0.69 231.67 315 265
20 小提花组织 0.39 186.46 435 410
21 重组织 0.58 233.32 200 195
22 方格组织 0.37 172.38 370 390
23 斜纹 0.30 149.58 465 350
24 27 tex×2纬平针 0.60 232.50 126 111

Fig.1

MatLab image processing."

Tab.2

Test data of fabric samples"

试样
编号
表面
孔隙率/%
体积
孔隙率/%
平均孔径/
μm
湿阻/
(m2·Pa·W-1)
1 0.81 56.42 24.79 4.25
2 0.67 38.54 18.47 2.67
3 0.16 31.37 14.81 2.27
4 0.04 31.59 16.89 2.83
5 0.06 34.97 17.42 3.00
6 0.32 35.24 12.76 3.30
7 0.45 39.83 20.18 3.70
8 0.46 34.51 11.42 2.53
9 0.03 39.14 14.75 2.90
10 6.42 63.57 44.90 4.13
11 6.22 60.40 29.79 4.20
12 2.66 63.38 40.46 4.34
13 2.45 71.37 55.79 4.13
14 7.40 64.57 70.16 4.10
15 3.00 63.74 40.11 4.45
16 4.16 62.64 35.54 4.35
17 5.58 65.32 52.33 4.31
18 4.00 61.00 58.84 4.47
19 2.57 57.21 52.94 4.23
20 0.59 39.34 18.06 2.87
21 1.25 48.72 56.55 3.95
22 0.37 40.25 12.59 3.56
23 0.14 37.00 11.04 2.99
24 3.45 50.31 61.04 3.99

Fig.2

Relationship between fabric volume porosity and wet resistance"

Tab.3

Variance analysis"

项目 平方和 自由度 均方 F 显著性
回归 10.24 2 5.12 82.88 0.00
残差 1.30 21 0.06
总计 11.54 23

Fig.3

Relation between fabric surface porosity and wet resistance"

Fig.4

Relation between average pore size and wet resistance"

[1] DAS A, YADAW S S. Study on moisture vapor transmission characteristics of woven fabrics from cotton-acrylic bulked yarns[J]. Journal of the Textile Institute Proceedings & Abstracts, 2013,104(3):322-329.
[2] 徐广标, 邱茂伟, 王府梅. 精纺毛织物的孔隙与结构及透气性的关系[J]. 毛纺科技, 2005,33(4):14-17.
XU Guangbiao, QIU Maowei, WANG Fumei. The relationship between porosity and structure and air permeability of worsted wool fabric[J]. Wool Textile Journal, 2005,33(4):14-17.
[3] 吴海军, 钱坤. 毛织物的孔隙与结构对其透气性的影响[C]// 2006中国国际毛纺织会议暨IWTO羊毛论坛论文集(上册). 西安: 中国毛纺织行业协会, 2016: 241-244.
WU Haijun, QIAN Kun. Effects of pore and structure of wool fabric on its permeability[C]// 2006 China International Wool Textile Conference and IWTO Wool BBS on (I). Xi 'an: China Wool Textile Industry Association, 2006: 241-244.
[4] 范菲, 齐宏进. 织物孔径特性与织物结构及芯吸性能的关系[J]. 纺织学报, 2007,28(7):38-41.
FAN Fei, QI Hongjin. Relationship between capillary properties and configurations and wicking capability of fabric[J]. Journal of Textile Research, 2007,28(7):38-41.
[5] 范菲, 齐宏进. 差动毛细效应与织物孔径特性的关系[J]. 纺织导报, 2008(8):90-92.
FAN Fei, QI Hongjin. Relationship between differential capillary effect and fabric aperture characteristics[J]. Textile Guide, 2008(8):90-92.
[6] 姚穆, 施楣梧, 蒋素婵. 织物湿传导理论与实际的研究: 第一报: 织物的湿传导过程与结构的研究[J]. 西北纺织工学院学报, 2001,15(2):1-8.
YAO Mu, SHI Meiwu, JIANG Suchan. Fabric moisture theory and practical research: first report: the study of fabric wet conduction process and fabric structure[J]. Journal of Northwest Institute of Textile Technology, 2001,15(2):1-8.
[7] YANILMAZ M, KALAOGLU F. Investigation of wicking, wetting and drying properties of acrylic knitted fabrics[J]. Textile Research Journal, 2012,82(8):820-831.
doi: 10.1177/0040517511435851
[8] FRAGIADAKI E, HARAHALAKIS S, KALOGIANNI E. Characterization of porous media by dynamic wicking combined with image analysis[J]. Colloids and Surfaces: A: Physicochemical and Engineering Aspects, 2012,413:50-57.
doi: 10.1016/j.colsurfa.2012.02.031
[9] 李毅, 王晓东. 毛织物的某些结构参数与织物热舒适物理指标的关系[J]. 毛纺科技, 1985,13(2):28-33.
LI Yi, WANG Xiaodong. Effects of some structural parameters of wool fabrics on physical comfort of fabric thermal comfort[J]. Wool Textile Journal, 1985,13(2):28-33.
[10] 姚穆, 施楣梧. 织物湿传导理论与实际的研究:第二报: 织物湿传导理论方程的研究[J]. 西北纺织工学院学报, 2001,15(2):9-14.
YAO Mu, SHI Meiwu. Theoretical and practical research on wet conduction theory of fabrics: second report: theoretical study on wet conduction theory of fabrics[J]. Journal of Northwest Institute of Textile Technology, 2001,15(2):9-14.
[11] FANGUEIRO R, GONÇALVES P, SOUTINHO F, et al. Moisture management performance of functional yarns based on wool fibres[J]. Indian Journal of Fibre & Textile Research, 2009,34(4):315-320.
[12] LI Y, HOLCOMBE B V. A two-stage sorption model of the coupled diffusion of moisture and heat in wool fabrics[J]. Textile Research Journal, 1992,62(4):211-217.
doi: 10.1177/004051759206200405
[13] LI Y, ZHONG Xuanluo. An improved mathematical simulation of the coupled diffusion of moisture and heating in wool fabric[J]. Textile Research Journal, 1999,69(10):760-768.
doi: 10.1177/004051759906901010
[14] 陈振宇, 周玲. 织物孔隙率的测定方法及对紫外性能的影响[J]. 现代纺织技术, 2009(4):42-43.
CHEN Zhenyu, ZHOU Ling. Effects of fabric porosity and its effect on UV properties[J]. Advanced Textile Technology, 2009 (4):42-43.
[15] 李芳, 周蓉, 湖生. 四种涤纶机织物过滤性能的对比研究[J]. 山东纺织科技, 2011 (2):4-6.
LI Fang, ZHOU Rong, HU Sheng. Comparative study on filtration performance of four polyester woven fabrics[J]. Shandong Textile Science and Technology, 2011 (2):4-6.
[16] 张新安. 仿毛机织物静态导湿机理探讨[J]. 毛纺科技, 2008,36(4):57-59.
ZHANG Xin'an. Study on the mechanism of wetting mechanism of polyester/viscose wool-like fabric under the static state[J]. Wool Textile Journal, 2008,36(4):57-59.
[1] DUO Yongchao, QIAN Xiaoming, ZHAO Baobao, QIAN Yao, ZOU Zhiwei. Preparation and properties of microfiber synthetic leather base [J]. Journal of Textile Research, 2020, 41(09): 81-87.
[2] . Measurement for bending behavior by bowknot method [J]. Journal of Textile Research, 2019, 40(08): 35-39.
[3] . Preparation and properties of multifunctional composite conductive wool fabric [J]. Journal of Textile Research, 2019, 40(08): 117-123.
[4] .

Effect of wool fabric protease modification on droplet spreading and color performance [J]. Journal of Textile Research, 2019, 40(06): 58-63.

[5] . Innovation design and performance test of needle composite wool fabric [J]. Journal of Textile Research, 2019, 40(03): 49-53.
[6] . Antibacterial dyeing of wool fabric with nano prodigiosins produced by microorganism [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(02): 91-96.
[7] . Synthesis and performance evaluation of mothproof naphthoquinone pigments for wool fabrics [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(10): 70-74.
[8] . Influence of rotating-drying model on properties of wool fabric drying in domestic dryer [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(07): 69-74.
[9] . Fluorine-free water repellent finish of worsted fabric [J]. Journal of Textile Research, 2016, 37(3): 114-118.
[10] . Gray clustering analysis on thermal-moisture comfort of phenolic fiber fabrics [J]. JOURNAL OF TEXTILE RESEARCH, 2016, 37(12): 29-32.
[11] . Measurement and analysis on thermal properties of men’s knitted underwear [J]. JOURNAL OF TEXTILE RESEARCH, 2016, 37(12): 92-96.
[12] . Influence of dye solution pH value on dyeing effects and antibacterial properties of wool fabrics dyed with tea natural dye [J]. JOURNAL OF TEXTILE RESEARCH, 2016, 37(11): 86-91.
[13] . Dyeing kinetics and thermodynamics of sorghum husk colorant onto wool fabric [J]. Journal of Textile Research, 2015, 36(03): 70-75.
[14] . Dyeing properties of HTCC treated wool fabrics with acid dyes [J]. JOURNAL OF TEXTILE RESEARCH, 2014, 35(8): 59-0.
[15] . Physical and chemical properties of surface modification wool by oxidation reduction method [J]. JOURNAL OF TEXTILE RESEARCH, 2014, 35(7): 1-0.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!