Journal of Textile Research ›› 2019, Vol. 40 ›› Issue (01): 159-165.doi: 10.13475/j.fzxb.20180304307

• Management & Information • Previous Articles     Next Articles

Three-dimensional modeling on single-layer woven fabric structure using MAXScript language

WANG Xu1,2(), CHU Changliu1, NI Qingqing3, LIU Xinhua1,2   

  1. 1. College of Textile and Clothing, Anhui Polytechnic University, Wuhu, Anhui 241000, China
    2. Science and Technology Public Service Platform for Textile Industry, Anhui Polytechnic University, Wuhu, Anhui 241000, China
    3. Faculty of Textile Science and Technology, Shinshu University, Nagano 3868567, Japan
  • Received:2018-03-19 Revised:2018-10-16 Online:2019-01-15 Published:2019-01-18

Abstract:

In order to improve the efficiency of three-dimensional modeling of woven fabric structure, a method of constructing three-dimensional model of woven fabric using MAXScript language embedded in 3ds MAX software was proposed. According to the theory of structure phase of woven fabric and the interlace rule of warp yarns and weft yarns, the relationship between the number of data points of yarn axis and the three-dimensional coordinates of the data point and the geometrical structure parameters of the woven fabric was established. And the warp axis curve, weft axis curve and the three-dimensional model of the fabric structure was established by SplineShape class object based on the the MAXScript program. The research shows that the coordinate of data point can be established according to the geometric parameters of the woven fabric by MAXScript program, and the curve of the yarn axis can be automatically generated by the spline interpolation with property setting of SplineShape class object and a parameter input interface of woven fabric is developed by rollout feature of MAXScript program, then the parametric three-dimensional model of the woven fabric structure can be realized conveniently and quickly.

Key words: MAXScript, woven fabric, data point, spline curve, 3-D modeling

CLC Number: 

  • TS105.11

Fig.1

Scheme of fifth structure phase of plain weave"

Fig.2

Scheme of fifth structure phase of twill weave"

Fig.3

Scheme of data points position of yarn axis"

Fig.4

Scheme of data points of yarn axis of plain weave."

Tab.1

Coordinate of data point of warp of plain weave"

序号 第1经 第2经
(32,0,0) (332,0,0)
(32,32,0.5) (332,32,-0.5)
(32,3,0) (332,3,0)
(32,332,-0.5) (332,332,0.5)
(32,23,0) (332,23,0)

Tab.2

Coordinate of data point of weft of plain weave"

序号 第1纬 第2纬
(0,32,0) (0,332,0)
(32,32,-0.5) (32,332,0.5)
(3,32,0) (3,332,0)
(332,32,0.5) (332,332,-0.5)
(23,32,0) (23,332,0)

Fig.5

Flow diagram of program"

Fig.6

3-D model with different section sides."

Fig.7

Parameter input interface of woven fabric"

Fig.8

Scheme of 3-D model of plain weave."

Fig.9

Scheme of 3-D model of twill weave."

Fig.10

Scheme of 3-D model of diamond twill weave"

[1] 郑天勇, 黄故. 机织物中纱线3D模型的建立[J]. 纺织学报, 2002,23(2):13-15.
ZHENG Tianyong, HUANG Gu. 3D modeling of yarn in woven fabric[J]. Journal of Textile Research, 2002,23(2):13-15.
[2] 郑天勇, 崔世忠. 用B样条曲面构建纱线三维模型的研究(I):具有不同截面的三维纱线模型的构造[J]. 纺织学报, 2006,27(2):53-57.
ZHENG Tianyong, CUI Shizhong. Study on constructing the 3D yarn model by B-spline surface: part I:construction of the 3D yarn model with different cross sections[J]. Journal of Textile Research, 2006,27(2):53-57.
[3] 郑天勇, 崔世忠. 用B样条曲面构建纱线三维模型的研究(II):纱线捻度的三维模拟[J]. 纺织学报, 2006,27(3):24-26.
ZHENG Tianyong, CUI Shizhong. Study on constructing the 3D yarn model by B-spline surface: part II:inserting 3D bumping texture on surface of yarn[J]. Journal of Textile Research, 2006,27(3):24-26.
doi: 10.1177/004051755702700104
[4] 王东峰, 郑天勇, 崔世忠, 等. 三维单纱的计算机模拟[J]. 棉纺织技术, 2006,34(6):29-31.
WANG Dongfeng, ZHENG Tianyong, CUI Shizhong, et al. Three-dimensional computer simulation of single yarn[J]. Cotton Textile Technology, 2006,34(6):29-31.
[5] 崔世忠, 郑天勇, 王东峰, 等. 用变截面纱线模型模拟平纹织物的研究[J]. 棉纺织技术, 2007,35(4):20-22.
CUI Shizhong, ZHENG Tianyong, WANG Dongfeng, et al. Research of simulating plain weave fabric by fancy cross section yarn model[J]. Cotton Textile Technology, 2007,35(4):20-22.
[6] 瞿畅, 王君泽, 高强. 机织物几何模型及其计算机模拟[J]. 纺织学报, 2002,23(3):46-48.
QU Chang, WANG Junze, GAO Qiang. Geometric model and computer simulation of woven fabric[J]. Journal of Textile Research, 2002,23(3):46-48.
[7] 张瑞云, 黄新林, 李汝勤. 机织物的计算机三维模拟[J]. 纺织学报, 2005,26(1):62-63,69.
ZHANG Ruiyun, HUANG Xinlin, LI Ruqin. 3-D computer simulation of woven fabric[J]. Journal of Textile Research, 2005,26(1):62-63,69.
[8] 顾平, 许家英. 基于3ds Max软件平台织物结构的三维模拟[J]. 丝绸, 2007,11:40-43.
GU Ping, XU Jiaying. 3-Dimensional simulation of fabric structure based on the 3DS MAX 7.0 software[J]. Journal of Silk, 2007,11:40-43.
[9] 谷大鹏, 杨育林, 齐效文, 等. 机织物三维仿真中组织模块化快速构建[J]. 纺织学报, 2014,35(1):134-138.
GU Dapeng, YANG Yulin, QI Xiaowen, et al. Fast modular construction of weave in woven fabric three-dimensional simulation[J]. Journal of Textile Research, 2014,35(1):134-138.
[10] 刘让同, 李亮, 刘淑萍, 等. 机织物结构相模型剖析和修正[J]. 纺织学报, 2017,38(10):32-37.
LIU Rangtong, LI Liang, LIU Shuping, et al. Analysis of modification of structure phase model of woven fabric[J]. Journal of Textile Research, 2017,38(10):32-37.
[11] 张国华, 杨兴强, 张彩明. 基于权因子的NURBS曲线形状调整[J]. 计算机辅助设计与图形学学报, 2004(10):1396-1400.
ZHANG Guohua, YANG Xingqiang, ZHANG Caiming. Weight-based shape modification of NURBS curves[J]. Journal of Computer-aided Design and Computer Graphics, 2004(10):1396-1400.
[12] 王华. 3ds MAXScript脚本语言完全学习手册[M]. 北京: 兵器工业出版社,2006:382- 386, 708-738.
WANG Hua. 3ds MAXScript Complete Study Manual [M]. Beijing: The Publishing House of Ordnance Industry, 2006:382- 386, 708-738.
[1] WANG Qiuping, ZHANG Ruiping, LI Chenghong, ZHANG Gecheng. Preparation and characterization of conductive polyester nonwovens [J]. Journal of Textile Research, 2020, 41(10): 116-121.
[2] LIU Muli, YUAN Li, YANG Yali, LIU Junping, GONG Xue, YAN Yuchen. Influence of fabric weaves on characteristics of colored patterns in color-woven fabrics [J]. Journal of Textile Research, 2020, 41(09): 45-53.
[3] ZHANG Zhuhui, ZHANG Diantang, QIAN Kun, XU Yang, LU Jian. Weaving process and off-axial tensile mechanical properties of wide-angle woven fabric [J]. Journal of Textile Research, 2020, 41(08): 27-31.
[4] WU Xianyan, SHENTU Baoqing, MA Qian, JIN Limin, ZHANG Wei, XIE Sheng. Finite element analysis on structural failure mechanism of three-dimensional orthogonal woven fabrics subjected to impact of spherical projectile [J]. Journal of Textile Research, 2020, 41(08): 32-38.
[5] MA Ying, HE Tiantian, CHEN Xiang, LU Sheng, WANG Youqi. Micro-geometry modeling of three-dimensional orthogonal woven fabrics based on digital element approach [J]. Journal of Textile Research, 2020, 41(07): 59-66.
[6] DAI Zhenxing, CHEN Guangfeng, CHEN Ge. Three-dimensional simulation of multiple high-low loop tufting carpet based on Rhino-Python [J]. Journal of Textile Research, 2020, 41(06): 69-75.
[7] LÜ Hanming, WANG Xiangyu, LIU Fengkun. Estimating water content of acetate fiber spunlaced nonwovens with dielectric spectroscopy [J]. Journal of Textile Research, 2020, 41(06): 55-60.
[8] MA Yanxue, WANG Shina, LI Yuling, WEN Run. Research on design and practice of integral woven fabrics with square lining structure [J]. Journal of Textile Research, 2020, 41(06): 42-47.
[9] JIN Shiyi, ZHOU Jiu. Innovative design of fabrics combining jacquard design and printing and clipping with a two-layer effect [J]. Journal of Textile Research, 2020, 41(06): 48-54.
[10] MIAO Miao, WANG Xiaoxu, WANG Ying, LÜ Lihua, WEI Chunyan. Preparation and antistatic property of graphene oxide grafted polypropylene nonwoven fabric [J]. Journal of Textile Research, 2019, 40(11): 125-130.
[11] YANG Enhui, QIU Hua, DAI Wenjie. Three-dimensional modeling and analysis of knitted fabric based on hexagonal mesh structure [J]. Journal of Textile Research, 2019, 40(11): 69-74.
[12] WANG Xu, DU Zengfeng, WANG Cuie, NI Qingqing, LIU Xinhua. Parametric three-dimensional modeling on through-thickness orthogonal woven fabric structure [J]. Journal of Textile Research, 2019, 40(11): 57-63.
[13] WANG Lu, DING Xiaojun, XIA Xin, WANG Hong, ZHOU Xiaohong. Protective function of SiO2 aerogel hybrid / aramid nonwovens fabric [J]. Journal of Textile Research, 2019, 40(10): 79-84.
[14] JIA Gaopeng, SONG Xiaohong, LI Ying, LIU Xiaodan, PAN Xueru. Current response in stretching process of Cu-Ni metal-coated woven fabric [J]. Journal of Textile Research, 2019, 40(10): 68-72.
[15] LIU Jian, MAO Jinlu, PENG Li, CAI Lingyun, ZHENG Xuming, ZHANG Fushan. Performance and regulation of hydrophilic oil agent for polyethylene-polypropylene nonwoven fabrics [J]. Journal of Textile Research, 2019, 40(09): 114-121.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!