Journal of Textile Research ›› 2019, Vol. 40 ›› Issue (03): 96-101.doi: 10.13475/j.fzxb.20180305106

• Dyeing and Finishing & Chemicalsc • Previous Articles     Next Articles

Influence of dielectric barrier discharge on adherent property of hose reinforcement layer

SUN Lei1, CAI Yingying1, YE Wei1,2, JI Tao1,2, SUN Qilong1,2()   

  1. 1. School of Textiles and Clothing, Nantong University, Nantong, Jiangsu 226019, China
    2. National & Local Joint Engineering Research Center of Technical Fiber Composites for Safety and Protection, Nantong, Jiangsu 226091, China
  • Received:2018-03-22 Revised:2018-08-18 Online:2019-03-15 Published:2019-03-15
  • Contact: SUN Qilong E-mail:sunqilong001@ntu.edu.cn

Abstract:

In order to improve the adherent property between fire-fighting hose reinforcement layer of high strength polyester tubular fabric and an ethylene propylene diene monomer(EPDM) lining, the tubular fabrics were treated by dielectric barrier discharge(DBD) plasma. The influences of DBD plasma treatment time on the properties of fabrics such as tensile strength, fabric wicking height, surface morphology, surface chemical composition and adherent property were studied. The scanning electron microscopy images show that obvious etching marks appear in the surface of the fiber after plasma treatment. X-ray photonic spectroscopy analysis shows that the oxygen and nitrogen polar functional groups are added to the surface of fibers. The wicking height increases with the increase of treatment time. The breaking strength of the polyester tows decreases with the increase of the treatment time, and when treatment time is 60 s, the strength loss rate is 3.9%. After treatment, the peeling strength between the tubular fabric and EPDM is improved greatly, and when treatment time is 60 s, the peeling strength is increased by 35.1%.

Key words: dielectric barrier discharge, fire-fighting hose reinforcement layer, high strength polyester tubular fabric, adherent property, peel strength

CLC Number: 

  • TS102.6

Fig.1

Schematic diagram of dielectric barrier discharge plasma equipment"

Fig.2

Samples for plasma treatment test, peeling test, wicking test, SEM, XPS and tensile test"

Fig.3

SEM images of polyester fiber surface before and after DBD plasma treatment(×1 000). (a) Untreated fiber; (b) 30 s; (c) 60 s; (d) 90 s; (e) 120 s"

Fig.4

Relationship between fabric wicking height and DBD plasma treatment time"

Fig.5

XPS spectra high strength polyester fiber surface. (a) XPS spectra before and after DBD plasma treatment; (b) N1s spectra before and after DBD plasma treatment; (c) C1s spectra before DBD plasma treatment; (d) C1s spectra after DBD plasma treatment"

Tab.1

Changes of contents of C, O and N on surface of polyester fiber before and after DBD plasma treatment"

样品 元素组成/% O与C
原子比
N与C
原子比
O+N与C
原子比
C O N
未处理 86.66 12.76 0.58 0.147 0.007 0.154
处理后 84.61 14.49 0.90 0.171 0.011 0.182

Tab.2

Changes of surface functional group content of polyester fiber before and after DBD plasma treatment"

基团种类 基团含量/%
未处理 处理后
C─C/C═C/C─H 62.10 53.80
─C─O─ 25.70 33.00
C─O─C/C─N 8.80 9.50
O═C─O 3.40 3.70

Fig.6

Breaking strength of high strength polyester warp tows under different DBD plasma treatment time"

Tab.3

Strength loss rate of warp tows under different treatment time"

处理时间/s 强力损失率/%
0 0
30 0.5
60 3.9
90 7.9
120 10.3

Fig.7

Relationship between peeling strength and DBD plasma treatment time"

[1] 杨小侠. 亚麻水龙带织物的设计与性能[J]. 上海纺织科技, 2008,36(7):47-49.
YANG Xiaoxia. Design of linen hose fabric and its performance[J]. Shanghai Textile Science & Technology, 2008,36(7):47-49.
[2] KČUEROVÁ G, STRUNK J, MUHLER M, et al. Effect of titania surface modification of mesoporous silica SBA-15 supported Au catalysts: activity and stability in the CO oxidation reaction[J]. Journal of Catalysis, 2017,356:214-228.
doi: 10.1016/j.jcat.2017.09.017
[3] FU Y, ZHANG Y, LI G, et al. NO removal activity and surface characterization of activated carbon with oxidation modification[J]. Journal of the Energy Institute, 2017,90:813-823.
doi: 10.1016/j.joei.2016.06.002
[4] LIU Y, ZHANG R, LIAN Z, et al. Yeast cell surface display for lipase whole cell catalyst and its appli-cations[J]. Journal of Molecular Catalysis B Enzymatic, 2014,106(4):17-25.
doi: 10.1016/j.molcatb.2014.04.011
[5] 代国亮, 肖红, 施楣梧. 涤纶表面亲水改性研究进展及其发展方向[J]. 纺织学报, 2015,36(8):156-164.
DAI Guoliang, XIAO Hong, SHI Meiwu. Research progress and development direction of surface hydrophilic modification of polyester fiber[J]. Journal of Textile Research, 2015,36(8):156-164.
[6] KO J, CHO K, HAN S W, et al. Hydrophilic surface modification of poly(methyl methacrylate)-based ocular prostheses using poly(ethylene glycol) grafting[J]. Colloids & Surfaces B Biointerfaces, 2017,158:287-294.
doi: 10.1016/j.colsurfb.2017.07.017 pmid: 28711015
[7] RAŽIĆ S E ĆUNKO R BAUTISTA L, et al. Plasma effect on the chemical structure of cellulose fabric for modification of some functional properties[J]. Procedia Engineering, 2017,200:333-340.
[8] RANI K V, SARMA B, SARMA A, et al. Plasma sputtering process of copper on polyester/silk blended fabrics for preparation of multifunctional properties[J]. Vacuum, 2017,146:206-215.
[9] PARVINZADEH M, EBRAHIMI I. Atmospheric air-plasma treatment of polyester fiber to improve the performance of nanoemulsion silicone[J]. Applied Surface Science, 2011,257(9):4062-4068.
[10] 赵远涛, 张若兵, 王黎明, 等. 双极性脉冲电压下介质阻挡放电及其涤纶表面改性[J]. 高电压技术, 2009,35(9):2238-2242.
ZHAO Yuantao, ZHANG Ruobing, WANG Liming, et al. Application of bipolar pulsed power to ADBD and terylene surface modification[J]. High Voltage Engineering, 2009,35(9):2238-2242.
[11] KHATAEE A, SAJJADI S, HASANZADEH A, et al. One-step preparation of nanostructured martite catalyst and graphite electrode by glow discharge plasma for heterogeneous electro-Fenton like process.[J]. Journal of Environmental Management, 2017,199:31-45.
doi: 10.1016/j.jenvman.2017.04.095 pmid: 28525809
[12] SPECKMANN F W, MÜLLER D, KÖHLER J, et al. Low pressure glow-discharge methanation with an ancillary oxygen ion conductor[J]. Journal of CO2 Utilization, 2017,19:130-136.
[13] REN Y, XU L, WANG C, et al. Effect of dielectric barrier discharge treatment on surface nanostructure and wettability of polylactic acid (PLA) nonwoven fabrics[J]. Applied Surface Science, 2017,426:612-621.
doi: 10.1016/j.apsusc.2017.07.211
[14] 唐久英. 低温等离子体技术在超高相对分子质量聚乙烯纤维表面改性中的应用[J]. 高科技纤维与应用, 2006,31(5):31-36.
TANG Jiuying. Application of low temperature plasma in surface modifacition of ultra high molecular weight fibers[J]. Hi-Tech Fiber & Application, 2006,31(5):31-36.
[15] MOLINA J, FERNÁNDEZ J, FERNANDES M, et al. Plasma treatment of polyester fabrics to increase the adhesion of reduced graphene oxide[J]. Synthetic Metals, 2015,202(9):110-122.
[16] 任煜, 张银, 王晓娜, 等. 空气介质阻挡放电对超高分子量聚乙烯纤维表面性能及粘结力的影响研究[J]. 高分子学报, 2016(10):1439-1446.
REN Yu, ZHANG Yin, WANG Xiaona, et al. Surface properties and adhesion force of air dielectric barrier discharge treated UHMWPE fibers[J]. Acta Polymerica Sinica, 2016(10):1439-1446.
[17] ZHANG C, ZHAO M, WANG L, et al. Effect of atmospheric-pressure air/He plasma on the surface properties related to ink-jet printing polyester fabric[J]. Vacuum, 2017,137:42-48.
[18] WANG C, LÜ J, REN Y, et al. Surface modification of polyester fabric with plasma pretreatment and carbon nanotube coating for antistatic property improvement[J]. Applied Surface Science, 2015,359:196-203.
[19] MEHMOOD T, KAYNAK A, DAI X J, et al. Study of oxygen plasma pre-treatment of polyester fabric for improved polypyrrole adhesion[J]. Materials Chemistry & Physics, 2014,143(2):668-675.
[20] KARAHAN H A, ÖZDOĞAN E. Improvements of surface functionality of cotton fibers by atmospheric plasma treatment [J]. Fibers & Polymers, 2008,9(1):21-26.
[1] ZHANG Huan, YAN Jun, WANG Xiaowu, JIAO Andong, LI Hong, ZHENG Laijiu, HE Tingting. Application of low temperature plasma in surface modification of polyester fiber [J]. Journal of Textile Research, 2019, 40(07): 103-107.
[2] WANG Chunying;WANG Chaoxia. Surface modification of polyester pongee fabric by atmospheric pressure dielectric barrier discharge techniques [J]. JOURNAL OF TEXTILE RESEARCH, 2010, 31(7): 97-101.
[3] TANG Lihua;REN Wanting; LI Xin;WANG Rongmin. Hydrophilic modification of PP nonwoven fabric by cold plasma [J]. JOURNAL OF TEXTILE RESEARCH, 2010, 31(4): 30-34.
[4] TANG Xiaoliang. Surface modification of polyester fabrics using atmospheric plasma [J]. JOURNAL OF TEXTILE RESEARCH, 2007, 28(8): 63-65.
[5] DU Wenqin;HOU Zhongliang;QI Hongjin. Decay law of wettability of polypropylene fiber treated by dielectric barrier discharge(DBD) [J]. JOURNAL OF TEXTILE RESEARCH, 2007, 28(6): 32-34.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!