Journal of Textile Research ›› 2019, Vol. 40 ›› Issue (04): 140-144.doi: 10.13475/j.fzxb.20180305205

• Machinery & Accessories • Previous Articles     Next Articles

Spectral reflectance piecewise partition model for characterizing digital inkjet printer

TIAN Quanhui1(), GU Ping1, ZHU Ming2   

  1. 1. Green Platemaking and Standardization Key Laboratory for Flexographic Printing, Shanghai Publishing and Printing College, Shanghai 200093, China
    2. School of Materials and Chemical Engineering, Henan University of Engineering, Zhengzhou, Henan 450007, China
  • Received:2018-03-22 Revised:2018-12-05 Online:2019-04-15 Published:2019-04-16

Abstract:

In order to improve the quality of color reproduction of digital inkjet printing, this paper studied the spectral characteristics of the printer which is the key technology for the textile inkjet printing, and presented a spectral reflectance piecewise partition model (SRPPM) for characterizing digital textile inkjet printing. Based on the nonlinear relationship between the 31 dimensional spectral reflectance and the digital driving data of the ink-jet printer, the model partitioned according to the reflectance band, used the nonlinear high order polynomial to fit the characteristic conversion coefficient between the output driving data and the color spectral reflectance in different bands, and applied the spectral characteristics of the digital inkjet printer by the obtained conversion matrix. Experimental results with skill textile show that the 90% spectral errors of testing color samples are less than 0.001 2, the maximum spectral error is 0.001 9, and the average spectral error is 0.000 8. While the 90% color differences of testing color samples are less than 1.0 NBS, the maximum value is 5.709 9 NBS and the average value is 0.570 0 NBS.

Key words: digital inkjet printer, spectral characterization, spectral piecewise partition, device characterization

CLC Number: 

  • TS101.3

Fig.1

Relationship between input digital scalars and spectral reflectance at given wavelength of inkjet textile."

Fig.2

Framework of SRPPM"

Fig.3

Prediction and measurement of cyan (a), manga(b), yellow(c) and black(d) spectral reflectance"

Fig.4

Cumulative relative frequency distribution of spectral root mean square error"

Fig.5

Cumulative relative frequency distribution of color difference(ΔE2000)"

[1] 黄益, 张海东, 孟一丁, 等. 纺织品数码喷墨印花用蓝光固化颜料墨水之柔性聚合体系研究[J]. 浙江理工大学学报, 2016,35(1):9-16.
HUANG Yi, ZHANG Haidong, MENG Yiding, et al. Study on flexible polymerization system of blue light curing ink for textile digital inkjet printing[J]. Journal of Zhejiang Sci-Tech University, 2016,35(1):9-16.
[2] 田安丽, 房宽峻, 王玉平, 等. 涂料与活性染料喷墨印花的颜色效果[J]. 染整技术, 2013 (7):20-24.
TIAN Anli, FANG Kuanjun, WANG Yuping, et al. Inkjet printing color effects of pigments and reactive dyes[J]. Textile Dyeing and Finishing Journal, 2013 (7):20-24.
[3] 刘杰, 杜长森, 张丽平, 等. 阳离子化棉织物的纳米乳胶荧光颜料染色[J]. 纺织学报, 2016,37(10):56-61.
LIU Jie, DU Changsen, ZHANG Liping, et al. Dyeing process of nanoscale latex fluorescent pigment on cationic cotton fabrics[J]. Journal of Textile Research, 2016,37(10):56-61.
[4] 于海琦, 刘真, 田全慧. 基于主成分分析的彩色扫描仪光谱特性化[J]. 影像科学与光化学, 2015,33(2):161-167.
YU Haiqi, LIU Zhen, TIAN Quanhui. Spectral characterization of color scanners based on principal component analysis[J]. Photographic Science and Photochemistry, 2015,33(2):161-167.
[5] 洪亮, 张浩, 朱明, 等. 基于模拟退火算法优化BP神经网络的色彩空间转换[J]. 包装工程, 2017,38(13):195-198.
HONG Liang, ZHANG Hao, ZHU Ming, et al. Optimization of color space conversion of BP neural network based on simulated annealing algorithm[J]. Packaging Engineering, 2017,38(13):195-198.
[6] 刘强, 黄政, 李庆明, 等. 基于墨量限制样本的打印机光谱特性化模型修正方法[J]. 光谱学与光谱分析, 2018,38(10):3182-3187.
LIU Qiang, HUANG Zheng, LI Qingming, et al. Updating a spectral printer characterization model based on ink limitation samples[J]. Spectroscopy and Spectral Analysis, 2018,38(10):3182-3187.
[7] 刘浩学, 崔桂华, 黄敏, 等. 按波长分区的LCD颜色特征化模型[J]. 光谱学与光谱分析, 2013(10):2751-2757.
LIU Haoxue, CUI Guihua, HUANG Min, et al. Colorimetric characterization of LCD based on wavelength partition spectral model[J]. Spectroscopy and Spectral Analysis>, 2013(10):2751-2757.
[8] HUANG Y, CAO B, XU C, et al. Synjournal process control and property evaluation of a low-viscosity urethane acrylate oligomer for blue light curable ink of textile digital printing[J]. Textile Research Journal, 2014,85(7):759-767.
[1] ZHENG Zhenrong, ZHI Wei, HAN Chenchen, ZHAO Xiaoming, PEI Xiaoyuan. Numerical simulation of heat transfer of carbon fiber fabric under impact of heat flux [J]. Journal of Textile Research, 2019, 40(06): 38-43.
[2] SHEN Yanqin, YANG Shu, WU Hailiang, WANG Zhongliang. Research progress of medium and low temperature water-soluble textile starch size [J]. Journal of Textile Research, 2019, 40(06): 142-151.
[3] . Effect of electron beam irradiation on dyeability of polyester fabrics [J]. JOURNAL OF TEXTILE RESEARCH, 2014, 35(7): 79-0.
[4] Hao ZHANG. Effects of grafted starch physicochemical properties on sizing performance [J]. JOURNAL OF TEXTILE RESEARCH, 2014, 35(1): 72-0.
[5] YANG Li-Qiang, ZHANG Shu-Zhi, SU Gao-Feng, LIU Xue-Min. Study on desorption properties of cotton textile for oil dirt [J]. JOURNAL OF TEXTILE RESEARCH, 2012, 33(3): 93-97.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!