Journal of Textile Research ›› 2019, Vol. 40 ›› Issue (01): 175-181.doi: 10.13475/j.fzxb.20180306107

• Comprehensive Review • Previous Articles     Next Articles

Current situation and trend of protective clothing for emergency rescue

ZHANG Haitang, WANG Hongfu, KE Ying()   

  1. School of Textiles and Clothing, Jiangnan University, Wuxi, Jiangsu 214122, China
  • Received:2018-03-19 Revised:2018-09-26 Online:2019-01-15 Published:2019-01-18
  • Contact: KE Ying E-mail:keying@jiangnan.edu.cn

Abstract:

In order to provide basic data and scientific basis for improving the function and comfort performance of emergency rescue protective clothing and optimum design of products, the development status of emergency rescue protective clothing was expounded from fabric selection, clothing structure design and main test methods. The basic designing processes of the rescue protective clothing were summarized, i.e., identifying application requirements, identifying key protection objects, designing the initial scheme and determining the best solution. The research bottleneck of the present rescue protective clothing in difficult combination of different functions, complex standards, and poor control on the accuracy of comfort evaluation was presented. It was predicted that the difference and high performance fibers, multi-functional and smart protecting system, better wearing comfort, and a complete and standard evaluating system would be the developing trends.

Key words: protective clothing, emergency rescue, pattern design, comfort performance

CLC Number: 

  • TS941.71

Tab.1

Selection of fabrics or fibers for different hazard factors"

危害因素 面料性能要求 面料或纤维选择
火患 耐高温、阻燃 多采用耐洗阻燃织物,如经阻燃剂整理过的纯棉布、化纤混纺布或用耐高温、阻燃纤维如诺梅克斯(Nomex)、芳砜纶等制成的织物。
水患 防水、透湿 多为涂层面料:超薄型橡胶涂覆织物、防水透湿涂覆织物;或通过据水整理的天然纤维或化学纤维混纺织物;目前应用广泛的美国研制的戈尔特斯(Gore-Tex)织物。
漏电 防静电 一般在纤维内部添加导电物质或抗静电剂或在纺织时加入导电纤维或超细金属丝等来取得抗静电效果。如棉/涤碳黑粒子混纺面料掺杂矿物颗粒,耐光性、热稳定性好,且功能持久,耐水洗。
有毒化学物质 耐腐蚀 纯毛紧密织物
防毒 多为隔绝型防毒织物和吸附型防毒织物。采用微胶囊技术和以聚烯烃、聚酯等惰性聚合物为原料的微孔中空纤维制成的解毒型防毒织物以及以TYVEK(特卫强)织物。

Tab.2

Performance comparison of single layer fabric used in two kinds of emergency rescue suits"

面料 干、湿情况下
的弹性
干、湿情况下的
耐磨性
吸湿性 尺寸稳定性 油污吸附
能力
易洗、快干 抗皱性 手感
T/C 65/35防静电面料 一般 较好 一般 易吸附油污 较好 较好 刺拉感
CVC防静电面料 较好 一般 较好 较好 易吸附油污 一般 一般 柔软

Fig.1

Reflection principle of lattice and glass microsphere."

Fig.2

Five methods of analysis for performance evaluation of emergency rescue protective clothing"

Fig.3

Design process of general rescue protective clothing"

[1] 李俊, 管文静, 韦鸿发. 功能防护服装的性能评价及其应用与发展[J]. 中国个体防护装备, 2005(6):22-25.
LI Jun, GUAN Wenjing, WEI Hongfa. Performance evaluation and its application and development of functional protective clothing[J]. China Personal Protective Equipment, 2005(6):22-25.
[2] 吕海燕. 个体防护装备在应急救援处置中的作用[J]. 中国个体防护装备, 2009(3):5-6.
LÜ Haiyan. The impact of personal protective equip-ment in the emergency rescue[J]. China Personal Protective Equipment, 2009(3):5-6.
[3] 崔淼. 浅谈防护服装的现状和对策[J]. 中国纤检, 2014(20):76-77.
CUI Miao. Introduction to the status quo and countm-easures of protective clothing[J]. China Fiber Inspection, 2014(20):76-77.
[4] 张婷婷, 张明明. 3种常见防护服的测试方法及质量验收[J]. 现代职业安全, 2017(3):22-24.
ZHANG Tingting, ZHANG Mingming. Test method and quality acceptance of 3 kinds of common protective cloth-ing[J]. Modern occupational safety, 2017(3):22-24.
[5] HEJAZI S M, KADIVAR N, SAJJAD A. Analytical assessment of woven fabrics under vertical stabbing: the role of protective clothing[J]. Forensic Science International, 2016(259):224-233.
[6] ANTO'NIO M, RAIMUNDOA, ANTO'NIO R. Personal protective clothing and safety of firefighters near a high intensity fire front[J]. Fire Safety Journal 2009(44):514-521.
[7] ANTONIN H, ZDENEK K. The physiological properties of smart textiles and moisture transport through clothing fabric[C]// FAN Jintu. Development in International Thermal Manikin and Modeling Meeting. Hong Kong: The Hong Kong Polytechnic University, 2006: 355-362.
[8] 赵阳, 姜秀慧. 《防护服一般要求》修订初探[J]. 中国安全生产科学技术, 2013(6):170-173.
ZHAO Yang, JIANG Xiuhui. Discussion on modifying of technical requirements for standard of protective clothing general requirements[J]. Journal of Safety Science and Technology, 2013(6):170-173.
[9] 刘何清, 刘天宇, 高黎颖, 等. 国内外防护服的发展与对比[J]. 矿业工程研究, 2016(3):71-76.
LIU Heqing, LIU Tianyu, GAO Liying, et al. Development and contrast of domestic and overseas protective garments[J]. Research on Mining Engineering, 2016(3):71-76.
[10] 林裕卫, 段胜伟, 吴耀根, 等. 新型改性TPE阻燃型无孔防水透湿阻隔薄膜在生化、阻燃及多功能防护服上的应用[J]. 纺织导报, 2017(Z1):83-86.
LIN Yuwei, DUAN Shengwei, WU Yaogen, et al. The application of a new modified and multi-functional non-porous TPE barrier film in biochemical, flame-retardant and multi-functional protective clothing[J]. Textile Guide, 2017(Z1):83-86.
[11] 罗道友, 朱笑初, 景肃, 等. 高性能热塑性聚醋弹性体(TPEE)的研究开发与应用[J]. 化工新型材料, 2007,35(3):2-6.
LUO Daoyou, ZHU Xiaochu, JING Su, et al. Research and application of high performance thermoplastic elastomer (TPEE)[J]. New Chemical Materials for Chemical Industry, 2007,35(3):2-6.
[12] 伏磊, 黄晨. 薄型抢险救援服内层非织造材料的制备及性能[J]. 产业用纺织品, 2017(5):8-15.
FU Lei, HUANG Chen. Preparation and properties of in-ner nonwovens for the thin type of emergency rescue garment[J]. Technical Textiles, 2017(5):8-15.
[13] 曾晓明, 肖振年. 一种多功能抢险救援服面料结构: 206416607 U[P]. 2017-08-18.
ZENG Xiaoming, XIAO Zhennian. A multi-functional fabric structure for emergency rescue suit: 206416607 U[P]. 2017-08-18.
[14] 张美进, 白建坤. 应对自然灾害国际救援制服标识意义与应用思考[J]. 中国个体防护装备, 2012(4):25-27.
ZHANG Meijin, BAI Jiankun. Significance and applica-tion thoughts on international rescue uniform logo in response to natural disasters[J]. China Personal Protective Equipment, 2012(4):25-27.
[15] WANG H X, WANG X G, LI T. UnidirectionaI water transfer effect from fabrics having a superhy drophobic-to-hydrophiIic gradient[J]. JournaI of Nano-Science and NanotechnoIogy, 2013(13):839-842.
[16] 支荣钏, 张强. 反光材料在警用救援服中的应用研究[J]. 中国个体防护装备, 2016(2):46-50.
ZHI Rongchuan, ZHANG Qiang. Research on application of reflective materials in the police rescue clothing[J]. China Personal Protective Equipment, 2016(2):46-50.
[17] RUCKMAN J E, MURRAY R, CHOI H S. Engineering of clothing systems for improved thermophysiological comfort: the effect of openings[J]. International Journal of Clothing Science and Technology, 1999,10(1):37-52.
[18] ADABMS P S, SLCUM A C, KEYSERLING W M. A model for protective clothing effects on performance[J]. International Journal of Clothing Science and Technology, 1994,6(4):6-16.
doi: 10.1108/09556229410054495
[19] HAVENITH G. Heat balance when wearing protective clothing[J]. The Annual Occupational of Hygiene, 1999,43(5):289-296.
[20] LI J, BARKER R L, DEATON A S. Evaluating the effects of material component and design feature on heat transfer in firefighter turnout clothing by a sweating manikin[J]. Textile Research Journal, 2007,77(2):59-66.
doi: 10.1177/0040517507078029
[21] 李毅. 服装舒适性与产品开发[M]. 北京: 中国纺织出版社, 2002: 107.
LI Yi. Clothing Comfort and Development [M]. Beijing: China Textile & Apparel Press, 2002: 107.
[22] MULLET K K. The effect of shoulder position on four sleeve/bodice structure[D]. Blacksburg: Virginia State University, 1991: 147-151.
[23] 董鹏. 地震灾害应急救援人员的安全防护[J]. 中国个体防护装备, 2015(4):51-53.
DONG Peng. Safety Protection of emergency rescue personnel for earthquake disaster[J]. China Personal Protective Equipment, 2015(4):51-53.
[24] UMBACH K H. Physiological tests and evaluation models for the optimization of the performance of protective clothing[C]// MEKJAVIC IB, BANISTER E W, MORRISON J B. Developments in Environmental Ergonomics. New York: IEEE Computer Society, 1988: 139-161.
[25] LEE C, KIM I Y, WOOD A. Investigation and correlation of manikin and bench-scale fire testing of clothing systems[J]. Fire and Materials, 2002(26):269-278.
[26] CAMENZIND M A, DALE D J, ROSSI R M. Manikin test for flame engulfment evaluation of protective clothing: historical review and development of a new ISO standard[J]. Fire and Materials, 2007 (31):285-295.
[27] BEHMANN F W, GOLDMAN R F, Bernhard K. Handbook on Clothing[M]. 2nd ed. [S.l.]: Research Study Group 7 on Bio-Medical Research Aspects of Military Protective Clothing, 2007: 16.
[28] HUCK J. Protective clothing systems: a technique for evaluating restriction of wearer mobility[J]. Applied Ergonomics, 1988,19(3):185-190.
doi: 10.1016/0003-6870(88)90136-6 pmid: 15676659
[29] PARK K, ROSENGREN K S, HORN G P, et al. Effect of load carriage on gait due to firefighting air bottle configuration[J]. Ergonomics, 2010,53:882-891.
pmid: 20582769
[30] GEORGE H, RONALD H. A test battery related to ergonomics of protective clothing[J]. Applied Ergonomics, 2004 (35):3-20.
[31] 沈润娥. 防护服的发展和改革[J]. 中国劳动防护用品, 1995(1):15-17.
SHEN Run'e. Development and reform of protective clothing[J]. Labor Protection Articles in China, 1995(1):15-17.
[32] 贾司光, 陈景山. 人体力学的生理基础及其在压力防护服设计中的应用[J]. 航天医学与医学工程, 1996(6):436-440.
pmid: 12434811
JIA Siguang, CHEN Jingshan. The physiological basis of human mechanics and its application in the design of pressure protective clothing[J]. Space medicine and medical engineering, 1996(6):436-440.
pmid: 12434811
[33] LOTENS W A. Optimal Design Principles for Clothing Systems[M]. Soesterbery: Institute of Perception, 1988: 75-79.
[34] 胡淑蓉, 李俊. 防护服性能测评的研究进展[J]. 纺织学报, 2011,32(5):148-154.
HU Shurong, LI Jun. Progress in research of protective clothing performance test and evaluation[J]. Journal of Textile Research, 2011,32(5):148-154.
[35] 郭晓芳, 李俊. 防护服装的应用及发展趋势[J]. 中国个体防护装备, 2007(6):16-19.
GUO Xiaofang, LI Jun. Application and development trend of protective clothing[J]. China Personal Protective Equipment, 2007(6):16-19.
[36] 周宏. 全球个体防护装备产业现状与发展趋势[J]. 中国个体防护装备, 2009(2):5-8.
ZHOU Hong. The current situation and development trend of the global individual protection equipment industry[J]. China Personal Protective Equipment, 2009(2):5-8.
[1] ZHAI Li′na, LI Jun, YANG Yunchu. Development and current state of thermal sensors used for testing thermal protective clothing [J]. Journal of Textile Research, 2020, 41(10): 188-196.
[2] WANG Fenglong, WANG Jianming, ZHOU Yitian, ZHAO Minghui. Study on liquid absorption performance of water absorbing resin [J]. Journal of Textile Research, 2020, 41(09): 21-26.
[3] CHEN Shiping, CHEN Min, WEI Cen, WANG Fujun, WANG Lu. Structure and functions of medical protective clothing and trend for research and development [J]. Journal of Textile Research, 2020, 41(08): 179-187.
[4] MIN Xiaobao, PAN Zhijuan. Comparison and analysis on structure and function of medical protective clothing [J]. Journal of Textile Research, 2020, 41(08): 172-178.
[5] WU Daiwei, LI Hongyan, DAI Yanyang, SU Yun, WANG Yunyi. Thermal function effectiveness and location of heating device in cold protective clothing [J]. Journal of Textile Research, 2020, 41(06): 118-124.
[6] LIU Yongmei, HAN Tianqi, ZHANG Xianghui, LÜ Fanglan. Pattern design method of traditional cheongsam [J]. Journal of Textile Research, 2020, 41(06): 99-104.
[7] HE Jiazhen, XUE Xiaoyu, WANG Min, LI Jun. Predicting thermal protective performance of clothing based on maximum attenuation factor model [J]. Journal of Textile Research, 2020, 41(06): 112-117.
[8] SU Wenzhen, LU Yehu, WANG Fangming, SONG Wenfang. Development of novel air inflatable jacket and thermal insulating property evaluation [J]. Journal of Textile Research, 2020, 41(05): 140-145.
[9] LÜ Kaimin, DAI Hongqin. Research progress of chemical protective clothing [J]. Journal of Textile Research, 2020, 41(05): 191-196.
[10] SU Wenzhen, SONG Wenfang, LU Yehu, YANG Xiuyue. Thermal insulation of air inflatable cold protective clothing [J]. Journal of Textile Research, 2020, 41(02): 115-118.
[11] DING Ning, LIN Jie. Free convection calculation method for performance prediction of thermal protective clothing in an unsteady thermal state [J]. Journal of Textile Research, 2020, 41(01): 139-144.
[12] LIANG Jialu, CONG Honglian, ZHANG Aijun. Technical design model of weft-knitted two-side jacquard fabric [J]. Journal of Textile Research, 2020, 41(01): 69-74.
[13] HU Ziting, ZHENG Xiaohui, FENG Mingming, WANG Yingjian, LIU Li, DING Songtao. Influence of air gap on thermal and moisture properties of permeable protective clothing [J]. Journal of Textile Research, 2019, 40(11): 145-150.
[14] HU Beibei, DU Feifei, LI Xiaohui. Hole structure optimization and evaluation of thermal barrier for firefighter protective clothing [J]. Journal of Textile Research, 2019, 40(11): 140-144.
[15] CHEN Si, LU Yehu. Influence of air gap size on steam protective performance of fireproof fabric [J]. Journal of Textile Research, 2019, 40(10): 141-146.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!