Journal of Textile Research ›› 2019, Vol. 40 ›› Issue (01): 120-129.doi: 10.13475/j.fzxb.20180306210

• Apparel Engineering • Previous Articles     Next Articles

Automatic measurement of three-dimensional human body based on scattered point cloud

BAO Chen1, MIAO Yongwei2(), SUN Yuliang1, ZHANG Xudong1   

  1. 1. College of Computer Science and Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310023, China
    2. School of Information Science and Technology, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
  • Received:2018-03-26 Revised:2018-10-03 Online:2019-01-15 Published:2019-01-18
  • Contact: MIAO Yongwei E-mail:ywmiao@zstu.edu.cn

Abstract:

In order to solve the human body's characteristic size extraction in 3-D human body scanning reconstruction using Kinect depth camera, an automatic measurement scheme of 3-D human body size based on scattered point cloud was proposed. Firstly, the collected 3-D point cloud was preprocessed, and then the front and back surfaces of a human body were identified by point cloud desampling, outlier filtering, surface reconstruction and point cloud coordinate transformation. Then, the human body geometric shape analysis method was used to automatically extract human body's characteristic points and characteristic section point cloud. Finally, the characteristic boundary points were extracted from the obtained characteristic cross section point cloud, and then the characteristic boundary line was obtained by the contour extraction algorithm based on the convex hull, the girth and arc length were calculated through the cubic B-spline curve fittings, and the length was calculated by coordinate difference and Euclidean distance, so that the characteristic size measurement of the 3-D human body point cloud model was completed. The experiment results show that the scheme is less affected by human body shape factors, and the proposed automatic extraction scheme of size information is effective. The feasibility is verified according to the measurement accuracy requirements of related standard.

Key words: scattered point cloud, point cloud segmentation, characteristic point of human body, 3-D human body measurement

CLC Number: 

  • TS941.26

Fig.1

Measurement system device of human body sizes"

Fig.2

Flow chart of human body size measurement"

Fig.3

Cloud data preprocessing of human body points."

Tab.1

Proportion of position of human body characteristic points and body height"

特征点名称 特征点位置与身高的比例
头顶点 1.00 1.00
颈侧点 0.84 0.86
肩峰点 0.82 0.81
腋窝点 0.75 0.75
胸高点 0.72 0.72
腰侧点 0.61 0.63
臀凸点 0.53 0.53
会阴点 0.47 0.47
膝盖点 0.26 0.28
外踝点 0.05 0.05
脚点 0.00 0.00

Fig.4

Segmentation results of human body point cloud."

Fig.5

Neck base line extraction."

Fig.6

Judging boundary feature points."

Fig.7

B-spline fitting of chest circumference convex-hull."

Fig.8

B-spline fitting of waist circumference convex-hull."

Fig.9

B-spline fitting of back breadth convex-hull."

Fig.10

Interactive measurement interface"

Tab.2

Precision analysis of measurement results cm"

测量
项目
观察者(i) 均值 IQR 标准差 CV值/%
第1次 第2次 第3次 第4次 第5次
身高 169.06 168.97 169.17 169.42 168.82 169.09 0.20 0.225 544 0.13
胸围 87.83 87.96 88.14 87.72 88.32 87.99 0.31 0.240 167 0.27
腰围 79.02 79.14 79.17 78.80 79.46 79.12 0.15 0.240 250 0.30
臀围 93.09 93.16 93.26 92.43 92.81 92.95 0.35 0.335 336 0.36
肩宽 44.79 44.57 44.12 43.76 43.33 44.11 0.81 0.592 647 1.34
臂长 59.12 59.30 59.48 59.51 58.61 59.20 0.36 0.367 056 0.62
上身长 69.86 69.62 69.98 69.57 69.63 69.73 0.24 0.178 241 0.26
腿内侧长 75.12 75.06 74.77 74.92 74.86 74.95 0.20 0.143 457 0.19

Fig.11

Measurement items of human body dimessions"

Tab.3

Error analysis of measurement cm"

测量
项目
本文方案
最大误差
本文方案
最小误差
本文方案
平均误差
文献[4]
最大误差
文献[18]
最大误差
身高 0.36 0.15 0.08 1.7
胸围 0.80 0.11 0.42 1.6 1.88
腰围 0.75 0.24 0.47 2.5 1.25
臀围 0.67 0.09 0.39 0.7 1.65
肩宽 0.85 0.31 0.78 1.6
臂长 0.38 0.1 0.21

Fig.12

Measurement error boxplot"

[1] 席焕久, 陈昭. 人体测量方法[M]. 北京: 科学出版社, 2010: 1-20.
XI Huanjiu, CHEN Zhao. Anthropometric Methods[M]. Beijing: Science Press, 2010: 1-20.
[2] ALLEN B, CURLESS P, POPOVI C Z. The space of human body shapes: reconstruction and parameterization from range scans[C]// Proceedings of ACM SIGGRAPH. San Diego: Acm Transactions on Graphics, 2003: 587-594.
[3] NURRE J H, CONNOR J, LEWARK E A, et al. On segmenting the three-dimensional scan data of a human body[J]. IEEE Transactions on Medical Imaging, 2000,19(8):787-797.
pmid: 11055802
[4] DEKKER L, DOUROS I, BUSTON B F. Building symbolic information for 3D human body modeling from range data[C]// International Conference on 3D Digital Imaging and Modeling. Ottawa: Institue of Electrical and Electronics Engineers, 1999: 388-397.
[5] LEONG I F, FANG J J, TSAI M J. Automatic body feature extraction from a maker-less scanned human body[J]. Computer-Aided Design, 2007,39(7):568-582.
doi: 10.1016/j.cad.2007.03.003
[6] MARKIEWICZ L, WITKOWSKI M, SITNIK R, et al. 3D anthropometric algorithms for the estimation of measurements required for specialized garment design[J]. Expert Systems with Applications, 2017,85:366-385.
doi: 10.1016/j.eswa.2017.04.052
[7] 陈国安, 刘飞, 李丽. 采用模糊规则的人体点云特征尺寸识别与提取[J]. 计算机辅助设计与图形学学报, 2011,23(8):1393-1399.
CHEN Guoan, LIU Fei, LI Li. Recognition and extraction of human body's feature dimensions using fuzzy rules[J]. Journal of Computer-Aided Design & Computer Graphics, 2011,23(8):1393-1399.
[8] TONG J, ZHOU J, LIU L, et al. Scanning 3-D full human bodies using Kinects[J]. IEEE Transactions on Visualization and Computer Graphics, 2012,18(4):643-650.
pmid: 22402692
[9] KOWALSKI M, NARUNIEC J, DANILUK M. LiveScan3D: a fast and inexpensive 3D data acquisition system for multiple kinect v2 sensors[C]// 2015 International Conference on 3D Vision. Lyon: Institue of Electrical and Electronics Engineers, 2015: 318-325.
[10] 伍龙华, 黄惠. 点云驱动的计算机图形学综述[J]. 计算机辅助设计与图形学学报, 2015,27(8):1341-1353.
WU Longhua, HUANG Hui. Survey on points-driven computer graphics[J]. Journal of Computer-Aided Design & Computer Graphics, 2015,27(8):1341-1353.
[11] WANG C C L, CHANG T K K, YUEN M M F. From laser-scanned data to feature human model: a system based on fuzzy logic concept[J]. Computer-Aided Design, 2003,35(3):241-253.
doi: 10.1016/S0010-4485(01)00209-3
[12] 葛宝臻, 郭华婷, 彭博, 等. 基于人体特征提取的模特体型尺寸自动测量方法[J]. 纺织学报, 2012,33(4):129-135.
GE Baozhen, GUO Huating, PENG Bo, et al. Automatic model style measurement based on automatic body feature extraction from 3-D scaning data[J]. Journal of Textile Research, 2012,33(4):129-135.
doi: 10.1177/004051756303300205
[13] ZHONG Y, XU B. Automatic segmenting and measurement on scanned human body[J]. International Journal of Clothing Science & Technology, 2006,18(1):19-30.
[14] 陈飞舟, 陈志杨, 丁展, 等. 基于径向基函数的残缺点云数据修复[J]. 计算机辅助设计与图形学学报, 2006,18(9):1414-1419.
CHEN Feizhou, CHEN Zhiyang, DING Zhan, et al. Filling holes in point cloud with radial basis function[J]. Journal of Computer-Aided Design & Computer Graphics, 2006,18(9):1414-1419.
[15] 钱锦锋, 陈志扬, 张三元, 等. 点云数据压缩中的边界特征检测[J]. 中国图象图形学报, 2005,10(2):164-169.
QIAN Jinfeng, CHEN Zhiyang, ZHANG Sanyuan, et al. The detection of boundary point of point cloud compression[J]. Journal of Image and Graphics, 2005,10(2):164-169.
[16] ROBINETTE K M, DAANEN H A. Precision of the CAESAR scan-extracted measurements[J]. Applied Ergonomics, 2006,37(3):259-265.
doi: 10.1016/j.apergo.2005.07.009 pmid: 16202970
[17] SHROUT P E, FLEISS J L. Intraclass correlations: uses in assessing rater reliability[J]. Pyschological Bulletin, 1979,86(2):420-428.
doi: 10.1037/0033-2909.86.2.420
[18] 李臻颖, 苏军强, 吴志明. 青年女体三维扫描数据的特征围度计算方法[J]. 纺织学报, 2017,38(5):110-114.
LI Zhenying, SU Junqiang, WU Zhiming. Calculating method of characteristics girth of young female body by 3-D scanning data[J]. Journal of Textile Research, 2017,38(5):110-114.
[1] . Design principle and method of jacquard pattern based on layered-combination design mode [J]. Journal of Textile Research, 2015, 36(06): 37-41.
[2] . Data simplification and hole-filling of body scan line point clouds [J]. Journal of Textile Research, 2015, 36(03): 110-114.
[3] . Forming principle and computer-aided design of warp knitted seamless fabric [J]. Journal of Textile Research, 2015, 36(02): 55-60.
[4] . Study on virtual simulation of 2-D patterns [J]. JOURNAL OF TEXTILE RESEARCH, 2014, 35(10): 141-0.
[5] . Fashion geometric printing pattern designing based on mathematical method [J]. JOURNAL OF TEXTILE RESEARCH, 2014, 35(3): 141-0.
[6] . Visualization simulation technolohy of cloth deformation based on mass-spring model and its prospect [J]. JOURNAL OF TEXTILE RESEARCH, 2013, 34(3): 147-153.
[7] TANG Ying;FANG Kuanjun;FU Shaohai;TIAN Anli;ZHANG Lianbing. Computer Simulation Research on Batik Crack Patterns [J]. JOURNAL OF TEXTILE RESEARCH, 2010, 31(3): 128-132.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!