Journal of Textile Research ›› 2019, Vol. 40 ›› Issue (01): 57-61.doi: 10.13475/j.fzxb.20180306905

• Textile Engineering • Previous Articles     Next Articles

Preparation and bending rigidness of twisted metal yarn

XU Haiyan1,2(), CHEN Nanliang3, JIANG Jinhua3, SHAO Guangwei3   

  1. 1. College of Textile and Apparel, Quanzhou Normal University, Quanzhou, Fujian 362000, China
    2. School of Textile Science and Engineering, Tianjin Polytechnic University, Tianjin 300387, China
    3. College of Textiles, Donghua University, Shanghai 201620, China
  • Received:2018-03-29 Revised:2018-10-15 Online:2019-01-15 Published:2019-01-18

Abstract:

In ordert decrease the bending rigidness of metal yarns with high strength, high modulus and low elongation for knitting, metal multifilaments with different fineness were twisted by rotor spinning machine and tubular strander. The morphologies of yarns by different twisting methods were observed, and the bending rigidness of monofilaments and multifilaments were measured. It was concluded that compared with rotor spun metal yarns, the yarns twisted by tubular strander has a better morphology. If a yarn fineness is given, the finer the monofilament is, and the smaller the bending rigidness is. Thus, the rigid yarns can be twisted by tubular strander, and bending rigidness of rigid yarns can be decreased by using finer monofilaments.

Key words: metal yarn, twisting, tubular strander, gold plated molybdenum wire, bending rigidness

CLC Number: 

  • TS181

Fig.1

Sketch map of twisting processing in tubular strander"

Fig.2

Sample of yarn for bending stiffness test"

Fig.3

Kinking of metal plied yarn."

Fig.4

Metallic plied yarn twisted by tubular strander"

Fig.5

Trends of monofilament in tubular strander before twisting."

Tab.1

Bending rigidity of metal yarn"

纱线
编号
By/
(cN·cm2)
Bfr/
(cN·cm2·tex-2)
Byr/
(cN·cm2·tex-1)
1# 0.001 0 0.147 9×10-3
2# 0.004 9 0.156 2×10-3
5# 0.003 9 0.371 4×10-3
6# 0.015 2 0.910 2×10-3
[1] HUANG Y, HU H, HUANG Y, et al. From industrially weavable and knittable highly conductive yarns to large wearable energy storage textiles[J]. ACS Nano, 2015,9(5):4766-4775.
pmid: 25842997
[2] LIU X M, CHEN N L, FENG X W. Investigation on the knittability of glass yarn[J]. Journal of the Textile Institute, 2009,100(5):440-450.
doi: 10.1080/00405000701877657
[3] 邵光伟, 蒋金华, 陈南梁. 柔性经编金属网格材料的切口敏感性[J]. 纺织学报, 2014,35(3):46-51.
SHAO Guangwei, JIANG Jinhua, CHEN Nanliang. Notching sensitivity of flexible warp knitting metal mesh[J]. Journal of Textile Research, 2014,35(3):46-51.
[4] LEONG K H, RAMAKRISHNA S, HUANG Z M, et al. The potential of knitting for engineering composites: a review[J]. Composites Part A: Applied Science and Manufacturing, 2000,31(3):197-220.
doi: 10.1016/S1359-835X(99)00067-6
[5] SAVCI S, CURISKIS J I, PAILTHORPE M T. Knittability of glass fiber weft-knitted preforms for composites[J]. Textile Research Journal, 2001,71(1):15-21.
doi: 10.1177/004051750107100103
[6] LAU K W, DIAS T. Knittability of high-modulus yarns[J]. Journal of the Textile Institute, 1994,85(2):173-190.
doi: 10.1080/00405009408659018
[7] HU H, ZHU M. A study of the degree of breakage of glass filament yarns during the weft knitting process[J]. Autex Research Journal, 2005,5(3):41-148.
[8] WILLIAMS D. New knitting methods offer continuous structures[J]. Engineering(London), 1987,227(6):12-13.
[9] 刘晓明, 蒋金华, 陈建祥, 等. 玻璃纤维网格织物的编织与性能分析[J]. 东华大学学报(自然科学版), 2008(4):391-395.
LIU Xiaoming, JIANG Jinhua, CHEN Jianxiang, et al. An investigation into the manufacture and mechanical property of glass net preform[J]. Journal of Donghua University (Natural Science Edition), 2008(4):391-395.
[10] RAMAKRISHNA S, HULL D. Tensile behaviour of knitted carbon-fibre-fabric/epoxy laminates: part I: experimental[J]. Composites Science and Technology, 1994,50(2):237-247.
doi: 10.1016/0266-3538(94)90145-7
[11] KNAPTON J J F. Knitting performance of wool yarns: instrumentation studies[J]. Textile Research Journal, 1967,37(7):539-551.
doi: 10.1177/004051756703700701
[12] SASAKI T, KURODA K. Evaluation and measurement of knittability[J]. Journal of the Textile Machinery Society of Japan, 1975,21(1):9-16.
doi: 10.4188/jte1955.21.9
[13] PETERSON J, VEGBORN E, ANDERSSON C H. Knittability of fibers with high stiffness[C]// The 5th International Conference on Textile Composite. Riga: [s.n], 2000: 1-10.
[14] COLLIER J R, TAO W Y, COLLIER B J. Bending of internally reinforced rayon fibers[J]. Journal of the Textile Institute, 1991,82(1):42-51.
doi: 10.1080/00405009108658735
[15] LAU Y M, TAO X, DHINGRA R. Spirality in single-jersey fabrics[J]. Textile Asia, 1995(8):95-102.
[16] 杨昆, 陶肖明, 叶荫权, 等. 一种新型针织用环锭纱的研制及应用[J]. 纺织学报, 2004,25(6):58-60.
YANG Kun, TAO Xiaoming, YE Yinquan, et al. Investigation and application of a novel ring knitting yarn[J]. Journal of Textile Research, 2004,25(6):58-60.
doi: 10.1177/004051755502500108
[17] 于伟东, 储才元. 纺织物理[M]. 上海: 东华大学出版社,2002: 126-127, 341-342.
YU Weidong, CHU Caiyuan. Textile Physics[M]. Shanghai: Donghua University Press,2002: 126-127, 341-342.
[1] LI Mingming, CHEN Ye, LI Xia, WANG Huaping. Influence of spinning process on property of parallel composite polyester fiber [J]. Journal of Textile Research, 2019, 40(12): 16-20.
[2] . Core structure and condensing mechanism of compact spun yarn [J]. Journal of Textile Research, 2019, 40(02): 53-57.
[3] . Application of double pleat in apparel modeling [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(05): 97-102.
[4] . influence of hollow spindler structure parameters on flow field of air jet vortex spinning [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(12): 135-140.
[5] . Preparation and stab-resistance performance of aramid/ stainless steel fiber core-spun fabrics [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(06): 33-39.
[6] SHAO Jingfeng;LI Yonggang;LI Bo; QIN Lanshuang; YANG Liping. Design and implementation of computer monitoring system oriented to coning, drawing and twisting workshop [J]. JOURNAL OF TEXTILE RESEARCH, 2010, 31(1): 117-122.
[7] ZHU Licheng;GU Wenyan;GE Mingqiao. Design of closed fibers-converging device of swirl spinning [J]. JOURNAL OF TEXTILE RESEARCH, 2008, 29(6): 105-108.
[8] HAN Shihong. Investigation on the lateral twist sizing device for reducing ramie yarn hairiness [J]. JOURNAL OF TEXTILE RESEARCH, 2008, 29(5): 114-116.
[9] WEI Pingjun;CAI Lili;LI Ge. A novel transmission and control system for twisting machine based on PCI bus [J]. JOURNAL OF TEXTILE RESEARCH, 2007, 28(12): 113-116.
[10] NIE Yu-hong;YUAN Bin-yu. Geometric disposition of the single yarns and mechanical analysis of strength in ply yarn [J]. JOURNAL OF TEXTILE RESEARCH, 2006, 27(7): 19-22.
[11] NIE Yu-hong;YUAN Bin-yu. Twisting and tensile strength of ring-spun yarn [J]. JOURNAL OF TEXTILE RESEARCH, 2006, 27(6): 81-83.
[12] DOU Hai-ping;WANG Ling;JIANG Xiao-wei;SUN Shi-yuan. Development of figured two-stretch elastic fabric of polyester/bamboo fiber [J]. JOURNAL OF TEXTILE RESEARCH, 2005, 26(6): 99-100.
[13] GE Ming-qiao;GU Wen-yan;YUAN Min-fa;LI Yong-gui . Method of disc swirl spinning [J]. JOURNAL OF TEXTILE RESEARCH, 2005, 26(2): 92-94.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!