Journal of Textile Research ›› 2019, Vol. 40 ›› Issue (03): 1-7.doi: 10.13475/j.fzxb.20180400207

• Fiber Materials •     Next Articles

Preparation of wool keratin solution by reducing agent-formic acid process

LI Bo1, YAO Jinbo2,3(), NIU Jiarong1, WANG Le1, FENG Mao1, SUN Yanli1   

  1. 1. School of Textile Science and Engineering, Tianjin Polytechnic University, Tianjin 300387, China
    2. College of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan, Hubei 430073, China
    3. Hubei Key Laboratory of Biomass and Eco-Dyeing & Finishing, Wuhan Textile University, Wuhan, Hubei 430073, China
  • Received:2018-04-02 Revised:2018-11-30 Online:2019-03-15 Published:2019-03-15
  • Contact: YAO Jinbo E-mail:jinboyao1964@wtu.edu.cn

Abstract:

In order to obtain the wool keratin solution with high fiber dissolution ratio and large protein molecular weight, the dissolution method of wool fibers was studied and optimized. On the basis of using organic phosphonic compounds (LKS-610) to effectively cleave the disulfide bonds in fibers, the dissolution state of pre-treated wool fibers in formic acid solution was studied. The fibers dissolution ratio, keratin solution viscosity and protein molecular weight distribution were tested as evaluation criteria, the optimal process for preparing keratin solution by using reducing agent-formic acid method was obtained, and the stability performance of keratin solution was also analyzed. The optimal dissolving process of wool fibers is that the mass of the pretreated wool fibers is 5 g, the volume of formic acid is 100 mL, the temperature is 50 ℃ and time is 5 h. Under the conditions, the dissolution ratio is about 65% and the molecular weights of keratin are distributed at 40-50 ku, 26 ku and 14.4 ku. In addition, the keratin solution shows good stability at normal temperature.

Key words: wool, keratin solution, reducing agent, formic acid, protein molecular weight

CLC Number: 

  • TS195.5

Tab.1

Amino acid content test results of wool fiber samples"

氨基酸
名称
未处理羊毛 处理30 min羊毛 处理60 min羊毛
质量/
(g·(100 g)-1)
占氨基酸
百分比/%
质量/
(g·(100 g)-1)
占氨基酸
百分比/%
质量/
(g·(100 g)-1)
占氨基酸
百分比/%
天门冬氨酸 5.164 2 6.26 5.427 2 7.46 5.283 8 7.59
苏氨酸 4.830 5 5.88 4.174 5 5.74 3.897 3 5.60
丝氨酸 7.030 1 8.52 5.970 2 8.21 5.603 0 8.05
谷氨酸 11.074 4 13.42 11.209 0 15.42 10.819 0 15.54
甘氨酸 4.407 4 5.34 3.896 1 5.36 3.645 3 5.24
丙氨酸 3.342 3 4.05 4.474 2 6.15 4.673 6 6.71
胱氨酸 8.325 0 10.09 1.123 7 1.55 0.732 3 1.05
缬氨酸 3.990 8 4.83 3.701 1 5.09 3.440 8 4.94
蛋氨酸 0.627 3 0.76 0.497 1 0.68 0.415 6 0.60
异亮氨酸 2.664 2 3.23 2.552 4 3.51 2.484 0 3.57
亮氨酸 6.958 6 8.43 7.016 1 9.65 6.907 8 9.92
酪氨酸 4.257 3 5.16 3.748 4 5.16 3.572 4 5.13
苯丙氨酸 3.173 6 3.84 2.604 7 3.58 2.631 0 3.78
赖氨酸 2.865 8 3.47 2.926 5 4.03 2.957 0 4.25
NH3(色氨酸分解) 1.241 7 1.50 1.179 5 1.62 1.130 5 1.62
组氨酸 0.941 7 1.14 0.846 3 1.16 0.806 4 1.16
精氨酸 7.870 2 9.53 7.990 8 10.99 7.777 1 11.17
脯氨酸 3.775 5 4.57 3.369 1 4.63 2.825 1 4.06
氨基酸总量 82.545 3 100.00 72.706 8 100.00 69.602 1 100.00

Fig.1

Dissolving state of untreated wool fibers in formic acid solution under different dissolution time"

Fig.2

Dissolving state of LKS-610 treated wool fibers in formic acid solution under different dissolution time"

Tab.2

Dissolution rate and viscosity changes of wool with different mass dissolved in formic acid"

溶液中羊毛质量/g 纤维溶解率/% 溶液黏度/(Pa·s)
3 72.3 0.023
4 70.6 0.040
5 66.7 0.054
6

Fig.3

SDS-PAGE gel electrophoretogram of samples with different disolved mass fraction"

Tab.3

Dissolution rate and viscosity change of samples at different dissolved temperatures"

溶解温度/ ℃ 纤维溶解率/% 溶液黏度/(Pa·s)
20 52.9 0.015
30 54.7 0.052
40 56.3 0.045
50 63.5 0.066
60 67.2 0.048
70 72.9 0.030
80 80.6 0.014

Fig.4

SDS-PAGE gel electrophoretogram of samples at different dissolved temperatures"

Tab.4

Dissolution rate and viscosity change of samples under different dissolving time"

纤维溶解时间/h 纤维溶解率/% 溶液黏度/(Pa·s)
3 47.9 0.047
4 52.7 0.050
5 62.5 0.060
6 68.9 0.039

Fig.5

SDS-PAGE gel electrophoretogram of samples under different dissolved time"

Fig.6

Molecular weight distribution of keratin solution after standing at room temperature for different time periods"

[1] 蔡再生. 纤维化学与物理 [M]. 北京: 中国纺织出版社, 2009: 195-208.
CAI Zaisheng. Chemistry and Physics of Fibers[M]. Beijing: China Textile & Apparel Press, 2009: 195-208.
[2] 孙艳丽, 姚金波, 李博, 等. 羊毛角蛋白质溶液的离子液体法制备[J]. 纺织学报, 2015,36(5):59-62.
SUN Yanli, YAO Jinbo, LI Bo, et al. Preparation of wool keratin solution with ionic liquid[J]. Journal of Textile Research, 2015,36(5):59-62.
[3] 张恒, 李戎, 王魁, 等. 还原法与离子液体溶解法制备羊毛角蛋白膜[J]. 纺织学报, 2015,36(6):55-59.
ZHANG Heng, LI Rong, WANG Kui, et al. Preparation of wool keratin membranes prepared by ionic liquid method and reduction C method[J]. Journal of Textile Research, 2015,36(6):55-59.
doi: 10.1177/004051756603600107
[4] SHAVANDI A, CARNE A, BEKHIT A A, et al. An improved method for solubilisation of wool keratin using peracetic acid[J]. Journal of Environmental Chemical Engineering, 2017,5(2):1977-1984.
doi: 10.1016/j.jece.2017.03.043
[5] ZHU H, LI R, WU X, et al. Controllable fabrication and characterization of hydrophilic PCL/wool keratin nanonets by electronetting[J]. European Polymer Journal, 2017,86:154-161.
doi: 10.1016/j.eurpolymj.2016.11.023
[6] XU H, MA Z, YANG Y. Dissolution and regeneration of wool via controlled disintegration and disentanglement of highly crosslinked keratin[J]. Journal of Materials Science, 2014,49(21):7513-7521.
doi: 10.1007/s10853-014-8457-z
[7] ALUIGI A, ZOCCOLA M, VINEIS C, et al. Study on the structure and properties of wool keratin regenerated from formic acid[J]. International Journal of Biological Macromolecules, 2007,41(3):266.
pmid: 17467791
[8] FAN J, YU W D. Investigation in the swelling and disintegration of wool fiber in formic acid[J]. Journal of Xi'an Polytechnic University, 2009,23(2):310-314.
[9] SVAGERA Z, HANZL K D, SIMEK P, et al. Study of disulfide reduction and alkyl chloroformate derivatization of plasma sulfur amino acids using gas chromatography-mass spectrometry[J]. Analytical & Bioanalytical Chemistry, 2012,402(9):2953.
doi: 10.1007/s00216-012-5727-y pmid: 22349320
[10] 高普, 刘建勇. TCEP羊毛低温染色助剂的性能[J]. 印染, 2012,38(17):12-16.
GAO Pu, LIU Jianyong. Properties of TECP for low temperature dyeing of wool fabric[J]. China Dyeing & Finishing, 2012,38(17):12-16.
[11] 湛海玲, 郭艺雯, 于伟东. 基于还原法的羊毛溶解及其效果表征[J]. 纺织学报, 2009,30(10):37-40.
ZHAN Hailing, GUO Yiwen, YU Weidong. Wool dissolution based on reduction method and characterization of its effect[J]. Journal of Textile Research, 2009,30(10):37-40.
doi: 10.1177/004051756003000104
[12] 王江波, 刘建勇, 王洁, 等. 基于新型还原剂羊毛角蛋白的高效溶解[J]. 材料导报, 2012,26(6):7-9.
WANG Jiangbo, LIU Jianyong, WANG Jie, et al. The efficent dissolution of wool based on new reductant[J]. Materials Review, 2012,26(6):7-9.
[13] TONIN C, ALUIGI A, VINEIS C, et al. Thermal and structural characterization of poly(ethylene-oxide)/keratin blend films[J]. Journal of Thermal Analysis & Calorimetry, 2007,89(2):601-608.
doi: 10.1007/s10973-006-7557-7
[14] HILL P, BRANTLEY H, VAN D M. Some properties of keratin biomaterials: kerateines[J]. Biomaterials, 2010,31(4):585-593.
doi: 10.1016/j.biomaterials.2009.09.076 pmid: 19822360
[1] LI Ruiqing, WANG Wei, WEI Bingju, ZHOU Changwen, ZHANG Shutao. Sulfur black dyeing process with environment friendly reducing agent [J]. Journal of Textile Research, 2020, 41(08): 50-54.
[2] CUI Guixin, DONG Yongchun, WANG Peng. Preparation and application properties of wool-Fe complex-based heterogeneous Fenton photocatalysts [J]. Journal of Textile Research, 2019, 40(12): 68-73.
[3] TU Li, MENG Jiaguang, LI Xin, LI Juanzi. Composition analysis and stripping process of waste wool/silk/cotton blended fabric [J]. Journal of Textile Research, 2019, 40(11): 75-80.
[4] WEI Lingli, ZOU Qinshan, WANG Lu, LUO Jing, XIA Xin. Preparation of fluorine-free water repellent treated wool/cashmere fabrics [J]. Journal of Textile Research, 2019, 40(09): 102-107.
[5] GAO Jing, WANG Lu. Influence of pretreatment process on superhydrophobic modification of wool/polyester fabric [J]. Journal of Textile Research, 2019, 40(09): 91-96.
[6] ZHANG Jingqing, SU Hui, LIANG Xiaoyun, CHEN Weiji, YAO Zhixiang. Rapid detection of banned dye Acid Red 26 in pure wool thread based on oblique projection [J]. Journal of Textile Research, 2019, 40(08): 85-88.
[7] YU Fang, LIU Chengxia. Measurement for bending behavior by bowknot method [J]. Journal of Textile Research, 2019, 40(08): 35-39.
[8] WANG Wencong, FAN Jingjing, DING Chao, WANG Hongbo. Preparation and properties of multifunctional composite conductive wool fabric [J]. Journal of Textile Research, 2019, 40(08): 117-123.
[9] BAO Hong, XU Shui, ZHANG Xiaoning, CHENG Guotao, ZHU Yong. Cationization of Bombyx mori silk fibroin and effect there of on wool traits [J]. Journal of Textile Research, 2019, 40(07): 24-30.
[10] MEI Jingxia, ZHANG Nan, WANG Qiang, YUAN Jiugang, FAN Xuerong. Wool anti-felting treatment based on modified protease [J]. Journal of Textile Research, 2019, 40(06): 73-78.
[11] AN Fangfang, FANG Kuanjun, LIU Xiuming, CAI Yuqing, HAN Shuang, YANG Haizhen. Effect of wool fabric protease modification on droplet spreading and color performance [J]. Journal of Textile Research, 2019, 40(06): 58-63.
[12] LIU Shuping, LI Liang, LIU Rangtong, CUI Shizhong, WANG Yanting. Structure and properties of keratin film modified by carboxymethyl cellulose sodium [J]. Journal of Textile Research, 2019, 40(06): 14-19.
[13] XING Wenyu, DENG Na, XIN Binjie, YU Chen. Identification of wool and cashmere based on multi-feature fusion image analysis technology [J]. Journal of Textile Research, 2019, 40(03): 146-152.
[14] CHEN Jingjing, WANG Biqi, WANG Xueqin. Innovation design and performance test of needle composite wool fabric [J]. Journal of Textile Research, 2019, 40(03): 49-53.
[15] ZHANG Wenjuan, JI Feng, ZHANG Ruiyun, ZHAO Xiaojie, WANG Ni, WANG Junli, ZHANG Jianxiang. Study on relationship between capillary characteristics and moisture permeability of wool fabrics [J]. Journal of Textile Research, 2019, 40(01): 67-72.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!