Journal of Textile Research ›› 2019, Vol. 40 ›› Issue (03): 133-138.doi: 10.13475/j.fzxb.20180400506

• Apparel Engineering • Previous Articles     Next Articles

Evaluation of thermal protection performance of honeycomb sandwich structure fabric for fireproof clothing

DU Feifei1, LI Xiaohui1,2,3(), ZHANG Siyan1   

  1. 1. College of Fashion and Design, Donghua University, Shanghai 200051, China
    2. Institute of Design and Innovation,Tongji University, Shanghai 200080, China
    3. Key Laboratory of Clothing Design and Technology, Ministry of Education,Donghua University, Shanghai 200051, China
  • Received:2018-04-02 Revised:2018-11-21 Online:2019-03-15 Published:2019-03-15
  • Contact: LI Xiaohui E-mail:lxh@dhu.ehu.cn

Abstract:

In view of the heaviness and stuffiness of current fireproof clothing, a honeycomb sandwich structure with heat insulation, high temperature resistance, moisture absorption and ventilation was proposed to improve its performance of functional protection and heat and moisture comfort. By analyzing the inherent heat transfer mechanism of honeycomb sandwich structure, 7 different kinds of honeycomb sandwich structures were designed and fabricated. The current typical layers of fabrics were chosen as the experimental samples. Taking into account of the fabric weight and the sorts of honeycomb sandwich structure, 21 kinds of experimental schemes were designed. Thermal protection performance (TPP) tester was used to evaluate the thermal protection performance, and further the effect of side length, wall thickness and core thickness of honeycomb sandwich structure on thermal protection performance of fireproof clothing was investigated. Experimental results show that the honeycomb sandwich structure is light and can meet the requirements of thermal protection performance. The smaller the side length, the larger the wall thickness and the larger the core thickness, the larger the TPP value of the fabric and the better the thermal protection performance.

Key words: fireproof clothing, honeycomb sandwich structure, thermal protection performance, thermal-wet comfort

CLC Number: 

  • TS941.73

Tab.1

Fabric samples and fundamental characteristics"

面料
编号
成分 颜色 面密度/
(g·m-2)
厚度/
mm
透气率/
(L·m-2·s-1)
A Nomex?? IIIA 藏青色 211.6 0.65 206.57
B I-70/聚四氟乙烯 浅黄+白色 106.1 0.66 0.84
C1 I-70毡Nomex?? 浅黄 72.3 0.81 1 658.02
C2 I-120毡Nomex?? 浅黄 128.4 1.28 1 087.65
C3 I-150毡Nomex?? 浅灰 151.3 1.65 988.50
D 阻燃粘胶 浅灰 125.6 0.61 1 262.45

Fig.1

Schematic diagram of sandwich layer honeycomb structure"

Tab.2

Parameters of honeycomb structure"

蜂窝孔形
结构编号
边长/
mm
壁厚/
mm
质量减轻
百分比/%
E1 实心 实心 0
E2 3 5.2 25.1
E3 3 2.6 44.2
E4 6 5.2 44.4
E5 6 2.6 64.2
E6 9 5.2 56.2
E7 9 7.8 44.4

Tab.3

Experimental scheme design"

实验
编号
外层 防水透
气层
隔热
舒适
蜂窝孔形
结构
1 A B C1 D E1
2 A B C1 D E2
3 A B C1 D E3
4 A B C1 D E4
5 A B C1 D E5
6 A B C1 D E6
7 A B C1 D E7
8 A B C2 D E1
9 A B C2 D E2
10 A B C2 D E3
11 A B C2 D E4
12 A B C2 D E5
13 A B C2 D E6
14 A B C2 D E7
15 A B C3 D E1
16 A B C3 D E2
17 A B C3 D E3
18 A B C3 D E4
19 A B C3 D E5
20 A B C3 D E6
21 A B C3 D E7

Fig.2

Schematic diagram of thermal protection performance tester"

Tab.4

Areal density of honeycomb core layersg/m2"

蜂窝孔形结构 C1 C2 C3
E1 72.3 128.0 151.0
E2 54.2 96.0 113.3
E3 40.2 71.2 84.0
E4 40.2 71.2 84.0
E5 25.9 45.8 54.1
E6 31.7 56.1 66.1
E7 40.2 71.2 84.0

Fig.3

Influence of honeycomb side length on TPP value"

Fig.4

Influence of honeycomb wall thickness on TPP value. (a) Side length of honeycomb of 3 mm; (b) Side length of honeycomb of 6 mm; (c) Side length of honeycomb of 9 mm"

Fig.5

Influence of honeycomb core thickness on TPP value"

[1] 崔琳琳. 国内外灭火消防服发展现状及趋势[J]. 天津纺织科技, 2016(2):3-5.
CUI Linlin. Development status and trend of fire fighting and fire-fighting clothing at home and abroad[J]. Tianjin Textile Science & Technology, 2016(2):3-5.
[2] HE H, YU Z C, SONG G. The effect of moisture and air gap on the thermal protective performance of fabric assemblies used by wildland firefighters[J]. Journal of The Textile Institute, 2016,7(8):1030-1036.
[3] ZHU F L, ZHANG W Y. Evaluation of thermal performance of flame-resistant fabrics considering thermal wave influence in human skin model[J]. Journal of Fire Sciences, 2006,24:465-485.
[4] 漆政昆, 张和平, 黄冬梅, 等. 消防服用织物材料热湿舒适性综合评价[J]. 中国安全科学学报, 2012,22(4):132-138.
QI Zhengkun, ZHANG Heping, HUANG Dongmei, et al. Comprehensive evaluation of thermal and moisture comfortableness of fabric for firefighter protective clothing[J]. Journal of Chinese Safety Science, 2012,22(4):132-138.
[5] LK McCarthy, MARZO M Di. The application of phase change material in fire fighter protective clothing[J]. Fire Technology, 2012,48:841-864.
doi: 10.1007/s10694-011-0248-3
[6] 崔志英, 袁晓云, 马春杰. 附加相变材料的消防服多层织物性能研究[J]. 产业用纺织品, 2014(7):10-13.
CUI Zhiying, YUAN Xiaoyun, MA Chunjie. Evalution of the performance of firefighter protective clothing with the addition of phase change material[J]. Technical Textiles, 2014(7):10-13.
[7] 朱方龙, 樊建彬, 冯倩倩, 等. 相变材料在消防服中的应用及可行性分析[J]. 纺织学报, 2014,35(8):124-132.
ZHU Fanglong, FAN Jianbin, FENG Qianqian, et al. Application and feasibility analysis of phase change materials in fire-fighting suit[J]. Journal of Textile Research, 2014,35(8):124-132.
doi: 10.1177/004051756503500205
[8] 李红燕, 张渭源. 消防服用织物的阻燃性能及其TPP值[J]. 纺织学报, 2008,29(5):84-88.
LI Hongyan, ZHANG Weiyuan. Flame retardancy and TPP value of fire-fighting wearable fabric[J]. Journal of Textile Research, 2008,29(5):84-88.
[9] QI Zhengkun, HUANG Dongmei, HE Song, et al. Thermal protective performance of aerogel embedded firefighter's protective clothing[J]. Journal of Engineered Fibers & Fabrics, 2013,8(2):134-139.
[10] 张志华, 王文琴, 祖国庆, 等. SiO2气凝胶材料的制备、性能及其低温保温隔热应用[J]. 航空材料学报, 2015,35(1):87-96.
ZHANG Zhihua, WANG Wenqin, ZU Guoqing, et al. Silica aerogel materials: preparation, properties, and applications in low-temperature thermal insulation[J]. Journal of Aeronautical Materials, 2015,35(1):87-96.
[11] 曹喜川. 蜂窝结构等效分析及空间结构热控制研究[D]. 西安: 西安电子科技大学, 2013: 58-59.
CAO Xichuan. A study for honeycomb structure equivalent and thermal control of spatial structure[D]. Xi'an: Xidian University, 2013: 58-59.
[12] 吴林志, 泮世东. 夹心结构的设计及制备现状[J]. 中国材料进展, 2009,28(4):40-45.
WU Linzhi, PAN Shidong. Survey of design and manufacturing of sandwich structures[J]. Material Progress in China, 2009,28(4):40-45.
[13] W Dafang, Z Liming, P Bing, et al. Thermal protection performance of metallic honeycomb core panel structures in non-steady thermal environments[J]. Experimental Heat Transfer, 2016,29(1):53-77.
doi: 10.1080/08916152.2014.940433
[14] 樊卓志, 孙勇, 段永华, 等. 金属蜂窝板参数对其传热性能的影响[J]. 材料导报, 2013,27(8):147-151.
FAN Zhuozhi, SUN Yong, DUAN Yonghua, et al. Influence of metallic honeycomb parameters on its heat transmission performance[J]. Materials Review, 2013,27(8):147-151.
[15] 徐兰娣, 戴国定, 杨晓华, 等. 消防员防护装备用织物的热防护性能研究[J]. 消防科学与技术, 2008(5):339-343.
XU Landi, DAI Guoding, YANG Xiaohua, et al. Research on the thermal protective performance of the fabric materials used in fireman personal equipment[J]. Fire Science and Technology, 2008 (5):339-343.
[1] ZHANG Zhaohua, LI Luyao, AN Ruiping. Thermal-wet comfort evaluation of head and torso ventilation of pipe garment [J]. Journal of Textile Research, 2020, 41(08): 88-94.
[2] HOU Yuying, LI Xiaohui. Evaluation of thermal storage performance of honeycomb insulation layer for fireproof clothing [J]. Journal of Textile Research, 2019, 40(12): 109-113.
[3] ZHANG Hongyue, LI Xiaohui. Evaluation on radiation thermal performance of honeycomb sandwich structure of thermal protective clothing fabrics [J]. Journal of Textile Research, 2019, 40(10): 147-151.
[4] . Comprehensive evaluation of thermal protection and comfort of outer fabrics of firefighter protective clothing [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(08): 100-104.
[5] WANG Li-Xin, FAN Xue-Rong, SUN You-Chang, CHAI Lei. Comparative study on thermal-wet comfort property of leather garment materials with different pores [J]. JOURNAL OF TEXTILE RESEARCH, 2012, 33(8): 97-102.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!