Journal of Textile Research ›› 2019, Vol. 40 ›› Issue (05): 59-63.doi: 10.13475/j.fzxb.20180403405

• Textile Engineering • Previous Articles     Next Articles

Numerical simulation of side compressive properties on glass fiber/epoxy resin sandwich composite

CAO Haijian1(), CHEN Hongxia2, HUANG Xiaomei1   

  1. 1. School of Textile and Clothing, Nantong University, Nantong, Jiangsu 226019, China
    2. Analysis & Testing Center, Nantong University, Nantong, Jiangsu 226019, China
  • Received:2018-04-16 Revised:2019-02-15 Online:2019-05-15 Published:2019-05-21

Abstract:

In order to reveal failure mechanism and failure mode of glass fiber/epoxy resin sandwich composite under side compressive load, a meso-structural model was built by using the finite element software ANSYS, and numerical simulation of side compressive properties on the composite was analyzed emphasisly. The stress and strain distribution of the composite, fibers and resin was discussed under side compressive loads of 3 mm displacement by using the meso-structural model. The results show that when the composite is subjected to side compressive load, the maximum value of stress occurs on the upper and lower face-sheet macroscopically, where the composite is damaged easily. The minimum value of stress occurs on the piles, where the composite is hard to be damaged. Unstable failure easily occurs on the face-sheet between two rows piles, which is the main failure cause of the composite. The fibers play a major role in bearing, and the resin plays a minor role microscopically. The failure mode is the resin fracture, and the interfacial de-bonding between fibers and resin when the composite is loaded with 3 mm displacement compression.

Key words: glass fiber/epoxy resin sandwich composite, numerical simulation, side compressive properties, failure mechanism, failure mode

CLC Number: 

  • TB332

Fig.1

Meso-structural model of glass fiber/epoxy resin sandwich composite. (a) Warp yarn;(b) Binder warp yarn;(c) Weft yarn;(d) Epoxy resin;(e) Composite"

Tab.1

Stiffness constant of glass fiber and resin"

组分 E11/
GPa
E22/
GPa
E33/
GPa
G12/
GPa
G23/
GPa
G13/
GPa
ν12 ν23 ν13
S-玻璃纤维 85 40 40 35 23 35 0.3 0.23 0.3
环氧树脂 3.5 3.5 3.5 1.3 1.3 1.3 0.35 0.35 0.35

Tab.2

Stress constant of glass fiber and resinMPa"

组分 XT YT ZT XC YC ZC S12 S23 S31
S-玻璃纤维 3 530 1 500 1 500 -5 300 -1 000 -1 000 1 000 800 1 000
环氧树脂 70 70 70 -100 -100 -100 30 30 30

Fig.2

Meso-structural model of glass fiber/epoxy resin sandwich composites after meshing"

Fig.3

Cloud pictures of side compressive stress distribution (a) and strain distribution (b) on glass fiber/epoxy resin sandwich composites"

Fig.4

Magnified cloud pictures of stress on face-sheet"

Fig.5

Glass fiber/epoxy resin sandwich composites after compression failure. (a) Integral failure appearance (b) Partial failure appearance on face-sheet"

Fig.6

Components stress and strain cloud pictures of glass fiber/epoxy resin sandwich composites. (a) Stress cloud pictures of warp yarn; (b) Strain cloud pictures of warp yarn; (c) Stress cloud pictures of binder warp yarn; (d) Strain cloud pictures of binder warp yarn;(e) Stress cloud pictures of resin; (f) Strain cloud pictures of resin;(g) Stress cloud pictures of weft yarn; (h) Strain cloud pictures of weft yarn"

[1] LI M, WANG S K, ZHANG Z G. Effect of structure on the mechanical behaviors of three-dimensional spacer fabric composites[J]. Applied Composite Materials, 2009,16(1):1-14.
[2] 周光明, 薄晓莉, 匡宁. 整体中空夹层复合材料的弹性性能分析[J]. 复合材料学报, 2010,27(1):185-189.
ZHOU Guangming, BO Xiaoli, KUANG Ning. Analysis of elastic property for hollow integrated sandwich composites[J]. Acta Materiae Compositae Sinica, 2010,27(1):185-189.
[3] SHYR T W, PAN Y H. Low velocity impact responses of hollow core sandwich laminate and interply hybrid laminate[J]. Composite Structures, 2004,64(2):189-198.
[4] 高爱君, 李敏, 王绍凯, 等. 三维间隔连体织物复合材料力学性能[J]. 复合材料学报, 2008,25(2):87-93.
GAO Aijun, LI Min, WANG Shaokai, et al. Experimental study on the mechanical characteristics of 3-D spacer fabric composites[J]. Acta Materiae Compositae Sinica, 2008,25(2):87-93.
[5] 周光明, 钟志珊, 张立泉, 等. 整体中空夹层复合材料力学性能的实验研究[J]. 南京航空航天大学学报, 2007,39(1):11-15.
ZHOU Guangming, ZHONG Zhishan, ZHANG Liquan, et al. Experimental investigation on mechanical properties of hollow integrated sandwich composites[J]. Journal of Nanjing University of Aeronautics & Astronauties, 2007,39(1):11-15.
[6] CAO Haijian, QIAN Kun, WEI Qufu, et al. Low-velocity impact behavior of 3-D fibre hollow integrated core sandwich composites[J]. Polymers & Polymer Composites, 2010,18(4):175-179.
[7] HOSUR M V, ADBULLAH M, JEELANI S. Manufacturing and low-velocity impact characterization of hollow integrated core sandwich composites with hybrid face sheets[J]. Composite Structures, 2004,65:103-115.
[8] 姚秀冬, 周叮, 刘伟庆. 复合材料夹层板芯层内树脂柱对性能的影响[J]. 材料科学与工程学报, 2009,27(6):37-941.
YAO Xiudong, ZHOU Ding, LIU Weiqing. Effects of resinic columns on composited sandwich plates[J]. Journal of Materials Science & Engineering, 2009,27(6):937-941.
[9] 邹建胜, 曾建江, 童明波, 等. 不同夹芯复合材料夹层结构的剪切破坏行为[J]. 机械工程材料, 2012,36(9):38-41.
ZOU Jiansheng, ZENG Jianjiang, TONG Mingbo, et al. Shear damage behavior of composite sandwich plate with different cores[J]. Materials for Mechanical Engineering, 2012,36(9):38-41.
[10] ALBERTO C, EGIDIO R, ENRICO P. Experimental characterization and numerical simulations of a syntactic-foam/glass-fibre composite sandwich[J]. Composites Science and Technology, 2000,60:2169-2180.
[11] VUURE A W, IVENS J A, VERPOEST I. Mechanical properties of composite panels based on woven sandwich-fabric preforms[J]. Composites: Part A, 2000,31:671-680.
[12] WANG M Y, CAO H J, QIAN K. Mechanical properties of three-dimensional fabric sandwich composites[J]. Journal of Engineered Fibers and Fabrics, 2014,9(3):1-7.
[1] CHU Xi, QIU Hua. Flow simulations of ring swirl nozzle under different inlet pressure conditions [J]. Journal of Textile Research, 2020, 41(09): 33-38.
[2] WU Xianyan, SHENTU Baoqing, MA Qian, JIN Limin, ZHANG Wei, XIE Sheng. Finite element analysis on structural failure mechanism of three-dimensional orthogonal woven fabrics subjected to impact of spherical projectile [J]. Journal of Textile Research, 2020, 41(08): 32-38.
[3] DING Ning, LIN Jie. Free convection calculation method for performance prediction of thermal protective clothing in an unsteady thermal state [J]. Journal of Textile Research, 2020, 41(01): 139-144.
[4] LI Sihu, SHEN Min, BAI Cong, CHEN Liang. Influence of structure parameter of auxiliary nozzle in air-jet loom on characteristics of flow field [J]. Journal of Textile Research, 2019, 40(11): 161-167.
[5] CHEN Xu, WU Bingyang, FAN Ying, YANG Musheng. Numerical simulation of low temperature protection process for heat storage fabrics [J]. Journal of Textile Research, 2019, 40(07): 163-168.
[6] ZHENG Zhenrong, ZHI Wei, HAN Chenchen, ZHAO Xiaoming, PEI Xiaoyuan. Numerical simulation of heat transfer of carbon fiber fabric under impact of heat flux [J]. Journal of Textile Research, 2019, 40(06): 38-43.
[7] GUO Zhen, LI Xinrong, BU Zhaoning, YUAN Longchao. Three-dimensional numerical simulation of fiber movement in nozzle of murata vortex spinning [J]. Journal of Textile Research, 2019, 40(05): 131-135.
[8] GUANG Shaobo, JIN Yuzhen, ZHU Xiaochen. Analysis on airflow field in extended nozzle of air jet loom [J]. Journal of Textile Research, 2019, 40(04): 135-139.
[9] LIU Qiannan, ZHANG Han, LIU Xinjin, SU Xuzhong. Simulation on tensile mechanical properties of three-elementary weave woven fabrics based on ABAQUS [J]. Journal of Textile Research, 2019, 40(04): 44-50.
[10] SHANG Shanshan, YU Chongwen, YANG Jianping, QIAN Xixi. Numerical simulation of airflow field in vortex spinning process [J]. Journal of Textile Research, 2019, 40(03): 160-167.
[11] SHI Qianqian, AKANKWASA Nicholus Tayari, LIN Huiting, ZHANG Yuze, WANG Jun. Comparative analysis of rotor spinning machines and yarn performance between conventional and dual-feed rotor spinning [J]. Journal of Textile Research, 2019, 40(02): 63-68.
[12] . Numerical simulation for twisting chamber of air jet vortex spinning based on hollow spindle with spiral guiding grooves [J]. Journal of Textile Research, 2018, 39(09): 139-145.
[13] . Comprehensive performance of auxiliary nozzle of air-jet loom based on Fluent [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(08): 124-129.
[14] . Simulation on fiber motion in airflow field of transfer channel [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(02): 55-61.
[15] . Modeling and numerical simulating for for residual ammonia volatilization from yarn bobbin [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(09): 149-154.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!