Journal of Textile Research ›› 2019, Vol. 40 ›› Issue (04): 44-50.doi: 10.13475/j.fzxb.20180405107

• Textile Engineering • Previous Articles     Next Articles

Simulation on tensile mechanical properties of three-elementary weave woven fabrics based on ABAQUS

LIU Qiannan, ZHANG Han, LIU Xinjin(), SU Xuzhong   

  1. Key Laboratory of Eco-Textiles(Jiangnan University), Ministry of Education, Wuxi, Jiangsu 214122, China
  • Received:2018-04-20 Revised:2018-11-06 Online:2019-04-15 Published:2019-04-16
  • Contact: LIU Xinjin E-mail:liuxinjin2006@163.com

Abstract:

In order to better understand the resisting external tensile deformation capability of the plain weave, twill and warp satin three-elementary cotton woven fabrics, a method for evaluating and predicting the tensile properties of woven fabrics was proposed. On the basis of the measured fabric structure parameters, a three-dimensional textile microscopic model was established by a professional textile modeling software Texgen. The numerical solution of the model was calculated using finite element software ABAQUS, setting material properties, interaction and boundary conditions according to the fabric stretching environment. The effectiveness of the numerical simulation was verified by the tensile test of fabric. The results show that the difference between simulation results and experimental test results on tensile stress and strain of plain weave fabric, twill fabric and warp satin fabric is within 6%. Plain weave has stronger resistance to external deformation under the same conditions of raw material, warp and weft yarn density, twist and warp and weft density.

Key words: three-elementary weave, woven fabric, geometric model, tensile strength, finite element method, numerical simulation

CLC Number: 

  • TS101.8

Tab.1

Fabric geometry parametersmm"

织物 纱线类型 宽度 高度 间距
平纹织物 经纱 0.156 0.145 0.218
纬纱 0.156 0.145 0.386
斜纹织物 经纱 0.151 0.150 0.218
纬纱 0.151 0.150 0.386
经面缎纹织物 经纱 0.149 0.152 0.218
纬纱 0.149 0.152 0.386

Fig.1

Yarn cross section"

Fig.2

Cubic Bézier curve"

Fig.3

Mesoscopic models of fabric. (a) Model surface of plain fabric; (b) Model warp section of plain fabric;(c) Model weft section of plain fabric; (d) Model surface of twill fabric;(e) Model warp section of twill fabric; (f) Model weft section of twill fabric; (g) Model surface of warp satin fabric; (h) Model warp section of warp satin fabric; (i) Model weft section of warp satin fabric"

Tab.2

Single yarn tensile strength parameters"

纱线类型 密度/(g·cm-3) 强力/cN 伸长率/% 弹性模量/MPa 泊松比
经纱 0.84 248.20 3.49 3 249.50 0.3
纬纱 0.84 205.00 3.41 2 504.30 0.3

Fig.4

Stress distribution of fabric model after warping tensile deformation. (a) Stress distribution of plain weave fabric model; (b) Warp yarn stress distribution in plain weave fabric model; (c) Weft yarn stress distribution in plain weave fabric model; (d) Stress distribution of twill fabric model; (e) Warp yarn stress distribution in twill fabric model; (f) Weft yarn stress distribution in twill fabric model; (g) Stress distribution of warp satin fabric model; (h) Warp yarn stress distribution in warp satin fabric model; (i) Weft yarn stress distribution in warp satin fabric model"

Fig.5

Energy curves of fabric stretching process. (a) ALLIE curves; (b) ALLKE curves;(c) ALLFD curves"

Tab.3

Fabric tensile strength parameters"

织物 强力/N 伸长/mm 伸长率/% 断裂时间/s
平纹织物 763.21 36.42 18.21 21.81
斜纹织物 729.70 27.26 13.63 16.33
经面缎纹织物 704.07 16.72 8.36 9.94

Fig.6

Comparison between numerical curves of finite element theory and experimental test curves. (a) Finite element simulation of fabric tensile stress-strain curve; (b) Fabric tensile strength test stress-strain curve"

Tab.4

Comparison of theoretical values and experimental values of fabric tensile stress-strain"

织物 应力 应变
理论值/
MPa
实验值/
MPa
差异
率/%
理论
值/%
实验
值/%
差异
率/%
平纹织物 165.51 159.19 3.97 17.96 18.21 1.37
斜纹织物 160.02 152.20 5.14 13.28 13.63 2.57
经面缎纹织物 154.93 146.85 5.50 8.07 8.36 3.47
[1] SHEN Y, MEIR A J, CAO Y Z, et al. Finite element analysis of monofilament woven fabrics under uniaxial tension[J]. Journal of the Textile Institute, 2015,106(1):90-100.
[2] DIXIT A, MISRA R K, MALI H S. Compression modeling of plain weave textile fabric using finite elements[J]. Materialwissenschaft und Werkstoffte-chnik, 2014,45(7):600-610.
[3] 李瑛慧, 谢春萍, 刘新金. 三原组织织物拉伸力学性能有限元仿真[J]. 纺织学报, 2017,38(11):41-47.
LI Yinghui, XIE Chunping, LIU Xinjin. Finite element simulation on tensile mechanical properties of three-elementary weave fabric[J]. Journal of Textile Research, 2017,38(11):41-47.
[4] 陈振, 管江明, 邢明杰. 基于TexGen的织物仿真建模及其应用方向[J]. 棉纺织技术, 2016,44(11):81-84.
CHEN Zhen, GUAN Jiangming, XING Mingjie. Fabric simulation modeling based on TexGen and its application direction[J]. Cotton Textile Technology, 2016,44(11):81-84.
[5] 邵明正. 层联机织复合材料细观结构建模与仿真[D]. 天津:天津工业大学, 2017: 25-26.
SHAO Mingzheng. Modeling and simulation of microstructure of laminated woven composite[D]. Tianjin: Tianjin Polytechnic University, 2017: 25-26.
[6] 吴佳佳, 唐虹. 应用ABAQUS的织物热传递有限元分析[J]. 纺织学报, 2016,37(9):37-41.
WU Jiajia, TANG Hong. ABAQUS based finite element analysis of heat transfer through woven fabrics[J]. Journal of Textile Research, 2016,37(9):37-41.
[7] 靳欢欢. 机织物三点梁弯曲性能有限元模拟与分析[D]. 上海:东华大学, 2016: 13-18.
JIN Huanhuan. Simulation and analysis of three-point bending property of woven fabrics by finite element method[D]. Shanghai: Donghua University, 2016: 13-18.
[8] 马倩. 机织物撕裂破坏机理的有限元分析[D]. 上海:东华大学, 2011: 19-23.
MA Qian. Finite element analysis of woven fabrics tearing damage[D]. Shanghai: Donghua University, 2011: 19-23.
[9] ABGHARY M J, NEDOUSHAN R J, HASANI H. Multi-scale Modeling the mechanical properties of biaxial weft knitted fabrics for composite applica-tions[J]. Applied Composite Materials, 2017,24(4):863-878.
[10] 曹荣平. 机织建筑膜材料拉伸力学性能的有限元模拟与分析[D]. 上海:东华大学, 2013: 1-2.
CAO Rongping. Simulation and analysis of tensile property of woven architectural membrane material by finite element method[D]. Shanghai: Donghua University, 2013: 1-2.
[1] WANG Qiuping, ZHANG Ruiping, LI Chenghong, ZHANG Gecheng. Preparation and characterization of conductive polyester nonwovens [J]. Journal of Textile Research, 2020, 41(10): 116-121.
[2] CHU Xi, QIU Hua. Flow simulations of ring swirl nozzle under different inlet pressure conditions [J]. Journal of Textile Research, 2020, 41(09): 33-38.
[3] LIU Muli, YUAN Li, YANG Yali, LIU Junping, GONG Xue, YAN Yuchen. Influence of fabric weaves on characteristics of colored patterns in color-woven fabrics [J]. Journal of Textile Research, 2020, 41(09): 45-53.
[4] ZHANG Zhuhui, ZHANG Diantang, QIAN Kun, XU Yang, LU Jian. Weaving process and off-axial tensile mechanical properties of wide-angle woven fabric [J]. Journal of Textile Research, 2020, 41(08): 27-31.
[5] WU Xianyan, SHENTU Baoqing, MA Qian, JIN Limin, ZHANG Wei, XIE Sheng. Finite element analysis on structural failure mechanism of three-dimensional orthogonal woven fabrics subjected to impact of spherical projectile [J]. Journal of Textile Research, 2020, 41(08): 32-38.
[6] MA Ying, HE Tiantian, CHEN Xiang, LU Sheng, WANG Youqi. Micro-geometry modeling of three-dimensional orthogonal woven fabrics based on digital element approach [J]. Journal of Textile Research, 2020, 41(07): 59-66.
[7] DAI Zhenxing, CHEN Guangfeng, CHEN Ge. Three-dimensional simulation of multiple high-low loop tufting carpet based on Rhino-Python [J]. Journal of Textile Research, 2020, 41(06): 69-75.
[8] LÜ Hanming, WANG Xiangyu, LIU Fengkun. Estimating water content of acetate fiber spunlaced nonwovens with dielectric spectroscopy [J]. Journal of Textile Research, 2020, 41(06): 55-60.
[9] MA Yanxue, WANG Shina, LI Yuling, WEN Run. Research on design and practice of integral woven fabrics with square lining structure [J]. Journal of Textile Research, 2020, 41(06): 42-47.
[10] JIN Shiyi, ZHOU Jiu. Innovative design of fabrics combining jacquard design and printing and clipping with a two-layer effect [J]. Journal of Textile Research, 2020, 41(06): 48-54.
[11] ZHU Weiwei, CAI Chong, ZHANG Cong, LONG Jiajie, SHI Meiwu. Effect of supercritical CO2 treatment temperature on structure and property of diacetate fiber [J]. Journal of Textile Research, 2020, 41(03): 8-14.
[12] FU Lisong, ZHANG Shujie, WANG Rui, YANG Zhaowei, JING Mengke. Tensile strength of polyester / ramie nonwoven composite applied on pipeline rehabilitation [J]. Journal of Textile Research, 2020, 41(02): 52-57.
[13] DING Ning, LIN Jie. Free convection calculation method for performance prediction of thermal protective clothing in an unsteady thermal state [J]. Journal of Textile Research, 2020, 41(01): 139-144.
[14] MIAO Miao, WANG Xiaoxu, WANG Ying, LÜ Lihua, WEI Chunyan. Preparation and antistatic property of graphene oxide grafted polypropylene nonwoven fabric [J]. Journal of Textile Research, 2019, 40(11): 125-130.
[15] WANG Xu, DU Zengfeng, WANG Cuie, NI Qingqing, LIU Xinhua. Parametric three-dimensional modeling on through-thickness orthogonal woven fabric structure [J]. Journal of Textile Research, 2019, 40(11): 57-63.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!