Journal of Textile Research ›› 2019, Vol. 40 ›› Issue (03): 8-12.doi: 10.13475/j.fzxb.20180405305

• Fiber Materials • Previous Articles     Next Articles

Preparation and properties of polylactic acid/polypropylene blend fiber by melt spinning

LI Xiaochuan1, QU Qianqian1, LI Xuming1,2()   

  1. 1. College of Textiles and Garments, Shaoxing University, Shaoxing, Zhejiang 312000, China
    2. Zheijiang Province Key Laboratory of Clean Dyeing and Finishing Technology, Shaoxing University,Shaoxing, Zhejiang 312000, China
  • Received:2018-04-23 Revised:2018-11-29 Online:2019-03-15 Published:2019-03-15
  • Contact: LI Xuming E-mail:lixm@usx.edu.cn

Abstract:

In order to enhance the mechanical properties of polylactic acid (PLA) fiber, polypropylene(PP) was melt blended with PLA, then PLA/PP blend fiber was prepared by melt spinning. The thermal property, heat stability, tensile property and orientation degree of the PLA/PP fiber were tested using differential scanning calorimeter, thermal gravimetric analyzer, universal testing machine, fiber birefringence meter, respectively. The results show that the addition of PP has no significant effect on the glass transition temperature and melting temperature of PLA, but the crystallization behavior of PLA is improved, and the degree of crystallinity enhances by 585.9%. With the increasing of PP content, the heat stability of PLA is decreased, especially the initial decomposition temperature is decreased obviously, but the carbon yield is increased. Meanwhile , the degree of orientation and mechanical properties of the PLA/PP fiber are enhanced. When the PP mass fraction is 20%, the orientation degree, breaking strength and elongation at break of the PLA/PP fiber increase 55.6%, 98.2% and 44.4%, respectively.

Key words: polylactic acid, polypropylene, melt blending, melt spinning, mechanical property

CLC Number: 

  • TS102.5

Fig.1

DSC heating curve of PLA/PP blends"

Tab.1

Thermal properties of PLA/PP blends"

样品
编号
Tg/
Tcc/
Tm/
ΔHcc/
(J·g-1)
ΔHm/
(J·g-1)
χc/
%
0# 63.37 165.99 -3.62 3.89
1# 63.38 97.75 167.62 15.87 -37.46 23.22
2# 63.06 96.59 167.12 14.40 -33.37 20.40
3# 63.73 97.25 167.82 13.18 -32.74 21.03
4# 63.21 96.37 167.06 13.21 -38.02 26.68

Fig.2

TG(a)and DTG(b)curves of PLA/PP blends"

Fig.3

SEM images of sections of PLA and PLA/PP blends(×1 000)"

Tab.2

Relationship between draft ration and refractive index of PLA/PA fiber"

样品编号 双折射率
1.5倍牵伸 2.0倍牵伸 2.5倍牵伸
0# 10.6 15.2 19.8
1# 22.5 23.5 26.5
2# 23.1 24.2 30.3
3# 23.8 24.7 30.4
4# 25.2 24.8 30.8

Fig.4

Influence of mass fraction of PP on tensile property of PLA/PP fiber"

Tab.3

Relationship between draft ration and mechanical property of PLA/PP fiber"

牵伸
倍数
断裂强度/
(cN·dtex-1)
断裂
伸长率/%
双折射率
1.5 1.58 30.48 23.8
2.0 1.77 26.97 24.7
2.5 3.29 24.62 30.4
[1] LI Longzhen, HUANG Wei, WANG Bingjie, et al. Properties and structure of polylactide/poly (3-hydroxybutyrate-co-3-hydroxy-valerate) (PLA/PHBV) blend fibers[J]. Polymer, 2015,68:183-194.
[2] WANG Ya'nan, WENG Yunxuan, WANG Lei. Characterization of interfacial compatibility of polylactic acid and bamboo flour (PLA/BF) in biocomposites[J]. Polymer Testing, 2014,36:119-125.
[3] 朱斐超, 韩建, 于斌, 等. 熔喷非织造用聚(3-羟基丁酸-co-3-羟基戊酸共聚酯)/聚乳酸双组分生物降解材料的可纺性能[J]. 纺织学报, 2016,37(2):21-27.
ZHU Feichao, HAN Jian, YU Bin, et al. Study on spinnability of biodegradable poly (3-hydroxybutyrate-co-3-hydroxyl vaIerate)/poly (lactic acid) blends for melt-blown nonwovens[J]. Journal of Textile Research, 2016,37(2):21-27.
[4] 刘淑强, 张蕊萍, 贾虎生, 等. 可生物降解聚乳酸长丝的熔融纺丝工艺[J]. 纺织学报, 2012,33(11):11-15.
LIU Shuqiang, ZHANG Ruiping, JIA Husheng, et al. Melt spinning process of biodegradable PLA filament[J]. Journal of Textile Research, 2012,33(11):11-15.
[5] IDRIS Zembouai, MUSTAPHA Kaci, AIDA Benhamida, et al. Poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/polylactide blends: thermal stability, flammability and thermo-mechanical behavior[J]. Journal of Polymers and the Environment, 2014,22:131-139.
[6] LIANG Guolei, LI Zhihong, WU Jimin. Reparation and properties of poly (lactic acid) fiber reinforced PHBV composite[J]. Applied Mechanics and Materials, 2013,420:107-113.
[7] BOUZIDIA Farida, GUESSOUM Melia, MAGALI Fois. Viscoelastic, thermo-mechanical and environmental properties of composites based on polypropylene/poly(lactic acid) blend and copper modified nano-clay[J]. Journal of Adhesion Science and Technology, 2018,32:496-515.
[8] WANG Ming, WU Ying, LI Yidong, et al. Progress in toughening poly(lactic acid) with renewable polymers[J]. Polymer Reviews, 2017,57:557-593.
[9] ABDELWAHAB M A, FLYNN A, CHIOU B S, et al. Thermal, mechanical and morphological characterization of plasticized PLA-PHB blends[J]. Polym Degrad Stab, 2012,97:1822-1828.
[10] 李旭明, 孙西超, 师利芬. 增强增韧聚乳酸纤维的制备及其性能[J]. 纺织学报, 2017,38(4):12-16.
LI Xuming, SUN Xichao, SHI Lifen. Preparation and properties research of reinforcing and toughening PLA fiber[J]. Journal of Textile Research, 2017,38(4):12-16.
[11] DIELLALI S, SADOUN T, HADDAOUI N, et al. Viscosity and viscoelasticity measurements of low density polyethylene/poly(lactic acid) blends[J]. Polym Bull, 2015,72:1177-1195.
[12] SINGH G, KAUR N, BHUNIA H, et al. Degradation behaviors of linear low-density polyethylene and poly(L-lactic acid) blends[J]. J Appl Polym Sci, 2012,124:1993-1998.
[13] HASHIMA K, NISHITSUJI S, INOUE T. Structure-properties of super-tough PLA alloy with excellent heat resistance[J]. Polymer, 2010,51:3934-3939.
[14] ROHLMANN C O, FAILLA M D, QUINZANI L M. Linear viscoelasticity and structure of polypropylene-montmorillonite nanocomposites[J]. Polymer, 2006,47:7795-7804.
doi: 10.1016/j.polymer.2006.08.044
[15] KOUTSOMITOPOULOU A F, BERGERET A. Preparation and characterization of olive pit powder as a filler to PLA-matrix bio-composites[J]. Powder Technology, 2014,255:10-16.
[16] 黄锦, 吴文倩, 项爱民. 聚乳酸与高分子弹性体共混体系的研究[J]. 中国塑料, 2010,24(11):54-57.
HUANG Jin, WU Wenqian, XIANG Aimin. Study on blends of PLA/elastomers[J]. China Plastics, 2010,24(11):54-57.
[17] SHIH Yengfong, HUANG Chienchung. Polylactic acid(PLA)/banana fiber (BF) biodegradable green composites[J]. J Polym Res, 2011,18:2335-2340.
[18] 于翔, 王延伟, 杨秀琴, 等. PHBV增韧PLA的结晶及力学性能研究[J]. 塑料科技, 2015,43:73-76.
YU Xiang, WANG Yanwei, YANG Xiuqin, et al. Study on crystallization and mechanical properties of PHBV toughened PLA[J]. Plastics Science and Technology, 2015,43:73-76.
[19] 徐文华, 杨智韬, 殷小春. 拉伸形变作用下PLA/PBS增韧共混物力学性能研究[J]. 中国塑料, 2016,30:34-38.
XU Wenhua, YANG Zhitao, YIN Xiaochun, et al. Study on mechanical properties of PLA/PBS toughening blends under tensile deformation[J]. China Plastics, 2016,30:34-38.
[1] GUAN Fucheng, GUO Jing, LÜ Lihua, TAN Qian, SONG Jingxing, ZHANG Xin. Hydrogen bonding mechanism and properties of polyvinyl alcohol / krill protein fibers [J]. Journal of Textile Research, 2020, 41(10): 7-13.
[2] QIAO Yansha, WANG Qian, LI Yan, SANG Jiawen, WANG Lu. Preparation and in vitro inflammation evaluation of polydopamine coated polypropylene hernia mesh [J]. Journal of Textile Research, 2020, 41(09): 162-166.
[3] PANG Yali, MENG Jiayi, LI Xin, ZHANG Qun, CHEN Yankun. Preparation of graphene fibers by wet spinning and fiber characterization [J]. Journal of Textile Research, 2020, 41(09): 1-7.
[4] ZHAN Xiaoqing, LI Fengyan, ZHAO Jian, LI Haiqiong. Thermal mechanical stability of ultrahigh molecular weight polyethylene fiber#br# [J]. Journal of Textile Research, 2020, 41(08): 9-14.
[5] ZHANG Zhuhui, ZHANG Diantang, QIAN Kun, XU Yang, LU Jian. Weaving process and off-axial tensile mechanical properties of wide-angle woven fabric [J]. Journal of Textile Research, 2020, 41(08): 27-31.
[6] LIU Xi, WANG Dong, ZHANG Liping, LI Min, FU Shaohai. Effect of low refractive resin on structure and properties of spun-dyed viscose fibers [J]. Journal of Textile Research, 2020, 41(07): 9-14.
[7] LI Liping, WU Daoyi, ZHAN Yikai, HE Min. Review on carbon fiber surface modification using electrophoretic deposition of carbon nanotubes and graphene oxide [J]. Journal of Textile Research, 2020, 41(06): 168-173.
[8] WAN Yucai, LIU Ying, WANG Xu, YI Zhibing, LIU Ke, WANG Dong. Structure and property of poly(vinyl alcohol-co-ethylene) nanofiber / polypropylene microfiber scaffold: a composite air filter with high filtration performance [J]. Journal of Textile Research, 2020, 41(04): 15-20.
[9] WANG Zongqian, YANG Haiwei, ZHOU Jian, LI Changlong. Effect of urea degumming on mechanical properties of silk fibroin aerogels [J]. Journal of Textile Research, 2020, 41(04): 9-14.
[10] DING Fang, REN Xuehong. Flame-retardant finishing of polyester fabrics by grafting phosphorus-nitrogen compounds [J]. Journal of Textile Research, 2020, 41(03): 100-105.
[11] ZHEN Qi, ZHANG Heng, ZHU Feichao, SHI Jianhong, LIU Yong, ZHANG Yifeng. Fabrication and properties of polypropylene / polyester bicomponent micro-nanofiber webs via melt blowing process [J]. Journal of Textile Research, 2020, 41(02): 26-32.
[12] LIU Yuhao, SUN Hui, WANG Jieqi, YU Bin. Preparation of TiO2 / MIL-88B(Fe) / polypropylene composite melt-blown nonwovens and study on dye degradation properties [J]. Journal of Textile Research, 2020, 41(02): 95-102.
[13] CUI Yifan, HOU Wei, ZHOU Qianxi, YAN Jun, LU Yanhua, HE Tingting. Influence of silk sericin temperature sensitive hydrogel on properties of cotton fabrics [J]. Journal of Textile Research, 2019, 40(12): 74-78.
[14] ZHANG Jiao, GAO Xuefeng, WANG Yuzhou, LIU Haihui, ZHANG Xingxiang. Preparation and properties of polyamide 66/amino-functionalized multi-walled carbon nanotubes fibers [J]. Journal of Textile Research, 2019, 40(11): 1-8.
[15] YANG Fan, LIU Junhua, BIAN Angting, WANG Yanping, QIAN Qiyuan, NI Jianhua, XIA Yumin, HE Yong, WANG Yimin. Influence of heat treatment on structure and properties of thermotropic liquid crystalline polyarylate fiber [J]. Journal of Textile Research, 2019, 40(11): 9-12.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!