Journal of Textile Research ›› 2019, Vol. 40 ›› Issue (06): 106-110.doi: 10.13475/j.fzxb.20180501105

• Machinery & Accessories • Previous Articles     Next Articles

Influence of guide-bar swing on instantaneous yarn demand and yarn tension on double needle bar warp knitting machine

XU Yunlong, XIA Fenglin()   

  1. Engineering Research Center for Knitting Technology, Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, China
  • Received:2018-05-02 Revised:2019-02-12 Online:2019-06-15 Published:2019-06-25
  • Contact: XIA Fenglin E-mail:xiafl_622@163.com

Abstract:

In order to study the influence of bar swing on instantaneous yarn demand and yarn tension fluctuation, based on the RDJ4/2 EL warp-knitting machine, the actual instantaneous yarn demand and yarn tension fluctuation at different running angle were measured. It is found from the calculation and analysis of the instantaneous yarn demand in the circle area and the instantaneous yarn demand of the guide bar that the fluctuation of the guide bar causes the fluctuation of instantaneous yarn demand by 231.5% compared with the form of motion with no bar swing. By comparing the fluctuating trend of overall instantaneous yarn demand and yarn tension, it is found that yarn tension and total instantaneous yarn demand have the similar increasing interval and decreasing interval, and have the similar interval of extreme value. Research shows that the swing of the guide bar increases range of fluctuations in the amount of yarn demand, and is the most important factor affecting the yarn tension and severely reduced the stability of the yarn.

Key words: warp knitting machine, knitting motion, yarn tension, yarn consumption

CLC Number: 

  • TS184

Fig.1

Testing platform of instantaneous yarn demand. (a) Test for instantaneous yarn demand of guide bar and knitting needle;(b) Test for instantaneous yarn demand of comb and knitting needle"

Fig.2

Measuring principle of yarn dynamic tension"

Fig.3

Instantaneous fluctuation of instantaneous yarn demand. (a) Instantaneous yarn demand of guide bar-knitting needle; (b) Instantaneous yarn demand of guide bar"

Fig.4

Fluctuation curve of yarn tension"

Tab. 1

Characteristic states and parameters of S1"

特征点 转角/(°) 机器状态 特征值/mm
峰值1 30 前针床上升,梳栉后摆 24.10
谷值1 60 梳栉前移至针床正上方 20.10
峰值2 90 前针床针前垫纱 23.90
谷值2 120 梳栉后移至针床正上方 21.50
峰值3 150 前针床脱圈 32.70
谷值3 180 梳栉位于针床正上方 27.20
峰值4 210 后针床上升,梳栉前摆 29.10
谷值4 240 梳栉后摆至针床正上方 26.50
峰值5 270 后针床针前垫纱 29.90
谷值5 300 梳栉前摆至针床正上方 27.20
峰值6 330 后针床脱圈 33.80

Tab.2

Characteristic states and parameters of S2and F"

特征点 转角/(°) 机器状态 S2/mm F/cN
峰值1 20~30 前针床上升,梳栉后摆 32.20 0.200
谷值1 85~95 前针床针前垫纱 14.00 0.067
峰值2 140~150 前针床脱圈 40.90 0.196
谷值2 210~220 后针床上升,梳栉前摆 20.20 0.075
峰值3 265~275 后针床针前垫纱 38.10 0.071
谷值3 325~335 后针床脱圈 23.90 0.095

Fig.5

State of characteristic value of instantaneous yarn demand"

Fig.6

Difference analysis of fluctuation of S1 and S2"

[1] 张灵婕, 缪旭红. 经编经纱张力补偿技术进展[J].纺织导报, 2016(5):64-66.
ZHANG Lingjie, MIAO Xuhong. Advances in warp knitting tension compensation technology[J]. China Textile Leader, 2016(5):64-66.
[2] 宗平生. 经编送经研究[J].针织工业, 1980(3):23-31.
ZONG Pingsheng. Study on warp knitting[J]. Knitting Industries, 1980(3):23-31.
[3] 冯勋伟. 经编机经纱张力分析及合理上机条件探讨[J]. 纺织学报, 1989,10(7):25-28.
FENG Xunwei. Analysis of warp yarn tension of warp knitting machine and discussion on reasonable loading condition[J]. Journal of Textile Research, 1989,10(7):25-28.
[4] 陈跃华, 冯勋伟, 姜艺. 编织重经织物时经纱张力分析[J].中国纺织大学学报, 1996(2):88-93.
CHEN Yuehua, FENG Xunwei, JIANG Yi. Analysis of warp tension when knitting heavy warp fabric[J]. Journal of China Textile University, 1996(2):88-93.
[5] MEULEMEESTER S D, GITHAIGA J, LANGENHOVE L V, et al. Simulation of the dynamic yarn behavior on airjet looms[J]. Textile Research Journal, 2005,75(10):724-730.
[6] 陈红霞, 蒋高明. 经编机经纱动态张力数字化测试[J].针织工业, 2004(6):35-38.
CHEN Hongxia, JIANG Gaoming. Digital testing of warp knitting machine dynamic tension[J]. Knitting Industries, 2004 (6):35-38.
[7] 曹飞, 熊和金. 基于DSP的纱线张力检测系统[J].电脑编程技巧与维护, 2008(14):71-73.
CAO Fei, XIONG Hejin. Yarn tension measuring system based on DSP[J]. Computer Programming Skills & Maintenance, 2008(14):71-73.
[8] 张毅, 刘长伴. 纱线动态与静态断裂强力的比较分析[J]. 纺织学报, 2006,27(6):64-66.
ZHANG Yi, LIU Changban. Comparative analysis of yarn dynamic and static breaking strength[J]. Journal of Textile Research, 2006,27(6):64-66.
[9] 张灵婕, 缪旭红, 蒋高明, 等. 经编张力补偿装置对经纱张力的影响[J]. 纺织学报, 2016,37(11):126-129.
ZHANG Lingjie, MIAO Xuhong, JIANG Gaoming, et al. Effect of warp knitting tension compensator on warp yarn tension[J]. Journal of Textile Research, 2016,37(11):126-129.
[10] 刘行. 经编纱线动态张力高频测试与评价[D]. 无锡:江南大学, 2017: 6-8.
LIU Xing. High frequency test and evaluation of dynamic tension of warp knitted yarns[D]. Wuxi: Jiangnan University, 2017: 6-8.
[11] 蒋高明. 针织学[M]. 4版.北京: 中国纺织出版社, 2015: 243-245.
JIANG Gaoming. Knitting Science [M]. 4th ed. Beijing: China Textile & Apparel Press, 2015: 243-245.
[1] SUN Shuai, MIAO Xuhong, ZHANG Qi, WANG Jin. Yarn tension fluctuation on high-speed warp knitting machine [J]. Journal of Textile Research, 2020, 41(03): 51-55.
[2] WANG Jiandong, XIA Fenglin, LI Yalin, ZHAO Yuning. Optimal sliding mode control of electronic transverse servo for comb bar of warp knitting machine [J]. Journal of Textile Research, 2020, 41(02): 143-148.
[3] ZHANG Qi, WEI Li, LUO Cheng, XIA Fenglin, JIANG Gaoming. Double jacquard control system of warp knitting machine based on dual bus architecture [J]. Journal of Textile Research, 2019, 40(07): 145-150.
[4] . Working mechanism of warp knitting yarn tension compensator [J]. Journal of Textile Research, 2018, 39(11): 140-144.
[5] . Evaluation of dynamic tension of warp knitting yarn [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(02): 68-72.
[6] . Simulation of electronic shogging system on warp knitting machine based on Simulink [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(02): 150-156.
[7] . Modeling and influence about speed of released-yarn in braiding spindles on yarn tension [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(06): 111-117.
[8] . Knitting motions for multi-bar warp knitting machine driven by E-cam [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(04): 127-133.
[9] . Design of embedded electronic jacquard control system [J]. JOURNAL OF TEXTILE RESEARCH, 2016, 37(10): 135-140.
[10] . Analysis on yarn tension properties of balloon bottom of BC9 ring [J]. JOURNAL OF TEXTILE RESEARCH, 2016, 37(08): 119-124.
[11] . Dynamic tension analysis on winding yarn in jacquard device of tufting carpet machine [J]. JOURNAL OF TEXTILE RESEARCH, 2015, 36(07): 136-141.
[12] . Analysis of shogging motion of guide bars on warp knitting machines [J]. JOURNAL OF TEXTILE RESEARCH, 2013, 34(7): 121-125.
[13] . Research on dynamic variable structure control strategy for high-speed electronic shogging motion on warp knitting machine [J]. JOURNAL OF TEXTILE RESEARCH, 2013, 34(3): 121-126.
[14] LIU Xin, HU Xu-Dong, CHEN Hong-Li. Dynamic analysis of warp knitting swing machine guide bar swing mechanism based on flexible multi-body system [J]. JOURNAL OF TEXTILE RESEARCH, 2012, 33(6): 92-96.
[15] ZHENG Bao-Ping, JIANG Gao-Ming, XIA Feng-Lin, ZHANG Qi, QIN Wen. Design of electronic shogging system based on double PID control on warp knitting machine [J]. JOURNAL OF TEXTILE RESEARCH, 2012, 33(5): 135-139.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!