Journal of Textile Research ›› 2019, Vol. 40 ›› Issue (05): 24-29.doi: 10.13475/j.fzxb.20180501506

• Fiber Materials • Previous Articles     Next Articles

Influence of multistage drawing and heat setting on structure and properties of polyethylene/polypropylene bicomponent fibers

LIU Jinxin1, ZHANG Haifeng1, ZHANG Xing1, HUANG Chen1, ZHENG Xiaobing2, JIN Xiangyu1()   

  1. 1. Engineering Research Center of Technical Textiles, Ministry of Education, Donghua University,Shanghai 201620, China
    2. Zhejiang Sunwish Chemical Fiber Co., Ltd., Jiaxing, Zhejiang 314005, China
  • Received:2018-05-04 Revised:2019-01-03 Online:2019-05-15 Published:2019-05-21
  • Contact: JIN Xiangyu E-mail:jinxy@dhu.edu.cn

Abstract:

In order to study the dimension and mechanical stability of polyethylene/polypropylene (PE/PP) bicomponent fibers prepared by the nonwoven spunlaid process, PE/PP bicomponent fiber samples were taken at different key process positions. The structure and properties of the fibers were measured by X-ray diffractometer, electronic single fiber strength tester, scanning electron microscope, and BEION fiber fineness test system. The results show that the degree of orientation and crystallinity of fiber gradually increase in the multistage drawing process, and the second stage drawing in the post-spinning process plays a major role in the orientation and crystallinity of fiber. The dimensional stability of fiber is not determined without heat setting, and the dry heat shrinkage is high. The mechanical properties of fiber after multistage drawing and heat setting are significantly improved, and the maximum breaking strength can reach 3.38 cN/dtex. The increase of heat setting temperature improves the dimensional stability of the fiber, and the heat setting temperature during preparation should not lower than 110 ℃.

Key words: spunlaid, polyethylene/polypropylene bicomponent fiber, multistage drawing, heat setting, mechanical property

CLC Number: 

  • TS174.8

Fig.1

Schematic diagram of PE/PP bicomponent fibers spunlaid process"

Fig.2

SEM images of PE/PP bicomponent fiber under different drawing stages"

Fig.3

2D-WAXD curves of PE/PP bicomponent fibers under different drawing stages"

Fig.4

XRD curves of PE/PP bicomponent fibers under different drawing stages"

Tab.1

Influence of drawing stages on orientation degree and crystallinity of PE/PP bicomponent fibers%"

试样编号 取向度 结晶度
R-1
S-1
S-2
S-3
36.60
48.60
67.90
74.80
37.67
45.31
59.65
65.64

Tab.2

Influence of drawing stages on mechanical properties of PE/PP bicomponent fibers"

试样编号 线密度/dtex 强度/(cN·dtex-1) 伸长率/%
R-1 10.01 1.40 985.57
S-1 8.06 1.69 949.36
S-2 2.61 2.90 175.84
S-3 2.18 3.07 167.24

Fig.5

SEM image of stretched PE/PP bicomponent fibers"

Fig.6

Dry heat shrinkage percentage vs. processing time under different drawing stages"

Tab.3

Mechanical properties of PE/PP bicomponent fibers at different heat setting temperatures"

试样
编号
线密度/
dtex
断裂强度/
(cN·dtex-1)
伸长率/
%
干热
收缩率/%
H-1 2.18 3.09 163.49 2.58
H-2 2.18 3.11 161.57 2.25
H-3 2.18 3.30 152.70 1.47
H-4 2.18 3.38 145.68 1.24
[1] 刘亚, 王铃铃. 卫生用热风非织造布的质量探讨[J]. 产业用纺织品, 2005,23(7):13-18.
LIU Ya, WANG Lingling. The study on hot air-though hygienic nonwovens quality[J]. Technical Textiles, 2005,23(7):13-18.
[2] DONG Ting, XU Guangbiao, WANG Fumei. Oil spill cleanup by structured natural sorbents made from cattail fibers[J]. Industrial Crops and Products, 2015,76:25-33.
[3] 周晨, 徐熊耀, 靳向煜. ES纤维热风非织造布驻极性能初探[J]. 纺织学报, 2012,33(9):66-70.
ZHOU Chen, XU Xiongyao, JIN Xiangyu. Exploration of electret property of area bonded ES-fiber fabric[J]. Journal of Textile Research, 2012,33(9):66-70.
[4] 曹识超. 电池隔膜用ES复合纤维非织造材料的磺化改性研究[D]. 上海:东华大学, 2011: 4.
CAO Shichao. Study on the sulfonation treatment of ES nonwoven fabrics as battery separator[D]. Shanghai: Donghua University, 2011: 4.
[5] 肖长发, 尹翠玉. 化学纤维概论[M]. 北京: 中国纺织出版社, 2015: 54.
XIAO Changfa, YIN Cuiyu. Introduction to Chemical Fibers[M]. Beijing: China Textile & Apparel Press, 2015: 54.
[6] 柯勤飞, 靳向煜. 非织造学[M]. 上海: 东华大学出版社, 2010: 235.
KE Qinfei, JIN Xiangyu. Nonwovens[M]. Shanghai: Donghua University Press, 2010: 235.
[7] 陈蕾, 杨明远, 毛萍君. 熔纺聚丙烯腈纤维的拉伸及热定型工艺[J]. 合成纤维工业, 2001(2):4-7.
CHEN Lei, YANG Mingyuan, MAO Pingjun. Study on drawing and heat setting of melt processable PAN(MPPAN) fibers[J].China Synthetic Fiber Industry, 2001(2):4-7.
[8] 李健, 黄庆, 李鑫. PGLA纤维拉伸过程中结晶与取向的变化[J]. 纺织学报, 2011,32(1):1-5.
LI Jian, HUANG Qing, LI Xin. Crystallinity and orientation of PGLA fiber during drawing[J]. Journal of Textile Research, 2011,32(1):1-5.
[9] 王非, 刘丽超, 薛平, 等. 拉伸温度对UHMW-PE/HDPE共混纤维结晶性能的影响[J]. 塑料, 2018,47(3):76-79.
WANG Fei, LIU Lichao, XUE Ping, et al. Effect of hot-drawing temperature on crystalline characters of UHMW-PE /HDPE Blend Fibers[J]. Plastic, 2018,47(3):76-79.
[10] 关礼争, 金旺, 王亚涛. 热拉伸工艺对聚甲醛纤维结构与性能的影响[J]. 合成纤维工业, 2018,41(3):25-28,32.
GUAN Lizheng, JIN Wang, WANG Yatao. Effect of hot drawing process on structure and properties of polyoxymethylene fiber[J]. China Synthetic Fiber Industry, 2018,41(3):25-28,32.
[11] 张勇, 张蕊萍, 相鹏伟, 等. 多级热拉伸对PPS纤维结构与性能的影响[J].合成纤维工业, 2015(6):38-42.
ZANG Yong, ZHANG Ruiping, XIANG Pengwei, et al. Effect of multi-zone hot drawing on structure and properties of PPS fiber[J].China Synthetic Fiber Industry, 2015(6):38-42.
[12] 刘鹏清, 吴炜誉, 李守群, 等. 拉伸与热定型对聚苯硫醚长丝结构性能的影响[J].合成纤维工业, 2008(2):8-11, 15.
LIU Pengqing, WU Weiyu, LI Shouqun, et al. Effect of drawing and heat setting on structure and properties of polyphenylene sulfide filament[J].China Synthetic Fiber Industry, 2008(2):8-11, 15.
[13] 赵博. 纺黏法非织造布气流拉伸模型的研究[J].聚酯工业, 2008(6):12-16.
ZHAO Bo. Research on the air dragmodel of spun-bonded nonwoven[J].Polyester Industry, 2008(6):12-16.
[14] 游锦璋, 靳向煜. 纺粘宽狭缝正压牵伸器拉伸气流流场研究[J]. 产业用纺织品, 2009,27(1):10-14.
YOU Jinzhang, JIN Xiangyu. Study on air flow field with wide slotmechanism of positive drawing in spunbond process[J]. Technical Textiles, 2009,27(1):10-14.
[15] 于伟东. 纺织材料学[M]. 北京: 中国纺织出版社, 2006: 71.
YU Weidong. Textile[M]. Beijing: China Textile & Apparel Press, 2006: 71.
[16] 赵敏. 改性聚丙烯新材料[M]. 北京: 化学工业出版社, 2010: 150.
ZHAO Min. Modified Polypropylene New Material[M]. Beijing: Chemical Industry Press, 2010: 150.
[17] KANG Y A, KIM K H, IKEHATA S, et al. In-situ analysis of fiber structure development for isotactic polypropylene[J]. Polymer, 2011,52(9):2044-2050.
[1] PANG Yali, MENG Jiayi, LI Xin, ZHANG Qun, CHEN Yankun. Preparation of graphene fibers by wet spinning and fiber characterization [J]. Journal of Textile Research, 2020, 41(09): 1-7.
[2] ZHAN Xiaoqing, LI Fengyan, ZHAO Jian, LI Haiqiong. Thermal mechanical stability of ultrahigh molecular weight polyethylene fiber#br# [J]. Journal of Textile Research, 2020, 41(08): 9-14.
[3] ZHANG Zhuhui, ZHANG Diantang, QIAN Kun, XU Yang, LU Jian. Weaving process and off-axial tensile mechanical properties of wide-angle woven fabric [J]. Journal of Textile Research, 2020, 41(08): 27-31.
[4] LIU Xi, WANG Dong, ZHANG Liping, LI Min, FU Shaohai. Effect of low refractive resin on structure and properties of spun-dyed viscose fibers [J]. Journal of Textile Research, 2020, 41(07): 9-14.
[5] LI Liping, WU Daoyi, ZHAN Yikai, HE Min. Review on carbon fiber surface modification using electrophoretic deposition of carbon nanotubes and graphene oxide [J]. Journal of Textile Research, 2020, 41(06): 168-173.
[6] WANG Zongqian, YANG Haiwei, ZHOU Jian, LI Changlong. Effect of urea degumming on mechanical properties of silk fibroin aerogels [J]. Journal of Textile Research, 2020, 41(04): 9-14.
[7] DING Fang, REN Xuehong. Flame-retardant finishing of polyester fabrics by grafting phosphorus-nitrogen compounds [J]. Journal of Textile Research, 2020, 41(03): 100-105.
[8] CUI Yifan, HOU Wei, ZHOU Qianxi, YAN Jun, LU Yanhua, HE Tingting. Influence of silk sericin temperature sensitive hydrogel on properties of cotton fabrics [J]. Journal of Textile Research, 2019, 40(12): 74-78.
[9] ZHANG Jiao, GAO Xuefeng, WANG Yuzhou, LIU Haihui, ZHANG Xingxiang. Preparation and properties of polyamide 66/amino-functionalized multi-walled carbon nanotubes fibers [J]. Journal of Textile Research, 2019, 40(11): 1-8.
[10] YANG Fan, LIU Junhua, BIAN Angting, WANG Yanping, QIAN Qiyuan, NI Jianhua, XIA Yumin, HE Yong, WANG Yimin. Influence of heat treatment on structure and properties of thermotropic liquid crystalline polyarylate fiber [J]. Journal of Textile Research, 2019, 40(11): 9-12.
[11] WU Liwei, WANG Wei, LIN Jiahorng, JIANG Qian. Preparation and mechanical properties of aramid/ ultra-high molecular weight polyethylene fabric reinforced polyurethane sandwich composite [J]. Journal of Textile Research, 2019, 40(07): 64-70.
[12] LIU Shuping, LI Liang, LIU Rangtong, CUI Shizhong, WANG Yanting. Structure and properties of keratin film modified by carboxymethyl cellulose sodium [J]. Journal of Textile Research, 2019, 40(06): 14-19.
[13] MO Dajie, LI Xuming, XU Zenghui. Preparation and properties of poly(3-hydroxybutyrate-co-3-hydroxyl valerate)/polylactic acid flame retardant fibersMO [J]. Journal of Textile Research, 2019, 40(05): 12-17.
[14] LIU Bingqian, SHENG Dan, PAN Heng, CAO Genyang. Influence of N,N-dimethylacetamide/CaCl2 system on structure and properties of thermotropic liquid crystal polyarylate fibers [J]. Journal of Textile Research, 2019, 40(04): 15-20.
[15] DONG Weiguo. Preparation and properties of glass fiber/polypropylene fiber reinforced thermoplastic composites [J]. Journal of Textile Research, 2019, 40(03): 71-75.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!