Journal of Textile Research ›› 2019, Vol. 40 ›› Issue (04): 32-37.doi: 10.13475/j.fzxb.20180503506

• Fiber Materials • Previous Articles     Next Articles

Preparation of graphene oxide/polyvinglidene fluoride composite filtration membrane and its filtration performance

HU Xuemin1(), YANG Wenxiu1, LI Teng2   

  1. 1. College of Textile and Garment, Hebei University of Science and Technology, Shijiazhuang, Hebei 050000, China
    2. College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
  • Received:2018-05-15 Revised:2019-01-10 Online:2019-04-15 Published:2019-04-16

Abstract:

In order to obtain high-filtration efficiency low-filtration resistance materials for air filtration, high performance graphene oxide/polyinglidene fluoride(PVDF) composite filtration membrane were prepared by blending graphene oxide particles into spinning solution using N,N-dimethylformamide/acetone as mixed solvents and PVDF as matrix, and electrospinning. The effects of PVDF concentration, graphene oxide concentration, electrospinning voltage and receiving distance on the morphology, filtration efficiency and filter resistance properties of high performance graphene oxide filtration membrane were discussed. The results show that under the conditions of PVDF mass fraction of 16%, graphene oxide mass fraction of 1.0%, electrospinning voltage of 29.0 kV and receiving distance of 16 cm, the prepared composite filtration membrane has good morphology and continuous and uniform fiber. The filtration efficiency of the composite filtration membrane is 99.99%, and the filtration resistance is 11.53 Pa/μm. The composite membrane has good filtering performance.

Key words: graphene oxide/polyvinylidene fluoride composite fiber, filtration membrane, electrospinning, filtration efficiency, filtration resistance

CLC Number: 

  • TQ340.64

Fig.1

Schematic diagram of electrospinning"

Fig.2

SEM images of GO/PVDF fiber membrane under different mass fraction of PVDF"

Fig.3

SEM images of GO/PVDF fiber membrane under different mass fraction of graphene oxide"

Tab.1

Coefficient of variation of fiber diameter under different mass fraction of graphene oxide"

GO质量分数/% 平均直径/nm 标准偏差/nm 变异系数/%
1.0 167 0.32 19
1.5 252 0.99 39
2.0 177 0.48 27

Fig.4

SEM images of GO/PVDF fiber membrane under different voltage"

Tab.2

Performance of GO/PVDF fiber membrane under different voltage"

纺丝电压/kV 过滤效率/% 孔隙率/% 过滤阻力/(Pa·μm-1)
25.0 99.96 68 20.80
27.5 99.98 82 14.69
30.0 99.98 76 28.93

Tab.3

Performance of GO/PVDF fiber membrane under different deposition distance"

接收距离/cm 过滤效率/% 孔隙率/% 过滤阻力/(Pa·μm-1)
12 99.94 70 12.50
14 99.98 80 14.69
16 99.91 82 12.26

Tab.4

Results of orthogonal experiment"

试验
编号
PVDF质量
分数/%
GO质量分
数/%
纺丝电压/
kV
过滤阻力/
(Pa·μm-1)
1 15 0.8 26.0 28.07
2 15 1.0 27.5 14.61
3 15 1.2 29.0 12.87
4 16 0.8 27.5 16.28
5 16 1.0 29.0 11.53
6 16 1.2 26.0 16.40
7 17 0.8 29.0 11.73
8 17 1.0 26.0 18.87
9 17 1.2 27.5 16.35
K1 55.55 56.08 63.34
K2 44.21 45.01 47.24
K3 46.95 45.62 36.13
k1 18.52 18.69 21.11
k2 14.74 15.00 15.75
k3 15.65 15.21 12.04
R 3.78 3.69 9.07

Fig.5

SEM images of GO/PVDF fiber membrane under optimal electrospinning conditions"

Tab.5

Filtration performance of PVDF and GO/PVDF fiber membrane"

纤维膜名称 过滤效率/% 孔隙率/% 过滤阻力/(Pa·μm-1)
PVDF 78.70 75 4.89
GO/PVDF 99.99 85 11.53

Tab.6

Effect of filtration time on filtration efficiency and filtration resistance of GO/PVDF fiber membrane"

过滤时
间/min
PVDF纤维膜 GO/PVDF 纤维膜
过滤效率/
%
过滤阻力/
(Pa·μm-1)
过滤效率/
%
过滤阻力/
(Pa·μm-1)
0 78.7 4.89 99.99 11.53
10 78.8 4.89 99.99 11.54
20 78.8 4.89 99.99 11.55
30 78.8 4.90 99.99 11.55
40 78.8 4.90 99.99 11.56
50 78.8 4.90 99.99 11.56
[1] 陈树清, 王向钦, 漆东岳. 防雾霾口罩的滤片及其测试面积对过滤性能的影响[J]. 中国纤检, 2016(2):90-92.
CHEN Shuqing, WANG Xiangqin, QI Dongyue. Effect of filter film and test area on the filtration performance of anti-smog masks[J]. China Fiber Inspection>, 2016(2):90-92.
[2] ZINADINI S, ZINATIZADEH A A, RAHIMI M, et al. Preparation of a novel antifouling mixed matrix PES membrane by embedding graphene oxide nanoplates[J]. Journal of Membrane Science, 2014,453(1):292-301.
[3] 张梅, 贾紫璇, 孙小娟, 等. 石墨烯纤维的湿法纺制及其性能[J]. 纺织学报, 2018,39(1):1-5.
ZHANG Mei, JIA Zixuan, SUN Xiaojuan, et al. Preparation and properties of wet-spinning graphene fibers[J]. Journal of Textile Research, 2018,39(1):1-5.
[4] 毕银萍, 田恩玲, 肖萍, 等. 静电纺丝法制备聚间苯二甲酰间苯二胺/氧化石墨烯复合纳米纤维膜及其性能研究[J]. 化工新型材料, 2018,46(3):103-106.
BI Yinping, TIAN Enling, XIAO Ping, et al. Preparation and characterization of PAIM/GO composite nanofibrous membrane by electrospinning[J]. New Chemical Materials, 2018,46(3):103-106.
[5] DUAN X, LIEBER C M. General synjournal of compound semiconductor nano wires[J]. Advanced Material, 2000,20(4):298-302.
[6] XU L, SONG H W, DONG B, et al. Preparation and bifunctional gas sensing properties of porous In2O3 -CeO2 binary oxide nano tubes[J]. Inorganic Chemistry, 2010,49(22):10590-10597.
pmid: 20949903
[7] WANG Z, YAN F, PEI H, et al. Antibacterial and environmentally friendly chitosan/polyvinyl alcohol blend membranes for air filtration[J]. Carbohydrate Polymers, 2018,198:241-248.
pmid: 30092996
[8] GAO H, YANG Y, AKAMPUMUZA O, et al. A low filtration resistance three-dimensional composite membrane fabricated via free surface electrospinning for effective PM2.5 capture[J]. Environmental Science: Nano, 2017,4(4):864-875.
[9] JING L, SHIM K, TOE C Y, et al. Electrospun polyacrylonitrile-ionic liquid nanofibers for superior PM2.5 capture capacity[J]. ACS Applied Materials & Interfaces, 2016,8(11):7030-7036.
doi: 10.1021/acsami.5b12313 pmid: 26918821
[10] 李岩, 仇天宝, 周治南, 等. 静电纺丝纳米纤维的应用进展[J]. 材料导报, 2011(17):84-88.
LI Yan, QIU Tianbao, ZHOU Zhinan, et al. Application development of electro spun nanofibers[J]. Materials Review>, 2011(17):84-88.
[11] 刘呈坤, 贺海军, 孙润军, 等. 静电纺制备多孔纳米纤维材料的研究进展[J]. 纺织学报, 2017,38(3):168-173.
LIU Chengkun, HE Haijun, SUN Runjun, et al. Research development for preparation of porous electro-spun nanomaterials[J]. Journal of Textile Research, 2017,38(3):168-173.
[12] LALIA B S, GUILLEN-BURRIEZA E, ARAFAT H A, et al. Fabrication and characterization of polyvinylidene fluoride-co-hexafluoropropylene (PVDF-HFP) electro spun membranes for direct contact membrane distilla-tion[J]. Journal of Membrane Science, 2013,428(2):104-115.
[13] FONG H, CHUN I, RENEKER D H. Beaded nanofibers formed during electrospinning[J]. Polymer, 1999,40(16):4585-4592.
[14] LIU Y, GUO L. Homogeneous field intensity control during multi-needle electrospinning via finite element analysis and simulation[J]. Journal of Nanoscience and Nanotechnology, 2013,13(2):843-847.
pmid: 23646527
[15] LI D, FREY M W, JOO Y L. Characterization of nanofibrous membranes with capillary flow poro-metry[J]. Membrane Science, 2006,286(12):104-114.
[16] 王哲, 潘志娟. 静电纺聚乳酸纤维的孔隙结构及其空气过滤性能[J]. 纺织学报, 2014,35(11):6-12.
WANG Zhe, PAN Zhijuan. Porous structure and air filtration performance of electrospun PLA fibers[J]. Journal of Textile Research, 2014,35(11):6-12.
[1] PAN Lu, CHENG Tingting, XU Lan. Preparation of polycapne / polyethylene glycol nanofiber membranes with large pore sizes and its application for tissue engineering scaffoldrolacto [J]. Journal of Textile Research, 2020, 41(09): 167-173.
[2] YANG Kai, ZHANG Xiaomei, JIAO Mingli, JIA Wanshun, DIAO Quan, LI Yong, ZHANG Caiyun, CAO Jian. Preparation and adsorption performance of high-ortho phenolic resin based activated carbon nanofibers [J]. Journal of Textile Research, 2020, 41(08): 1-8.
[3] WU Hong, LIU Chengkun, MAO Xue, YANG Zhi, CHEN Meiyu. Research progress in preparation and application of flexible zirconia nanofibers by electrospinning [J]. Journal of Textile Research, 2020, 41(07): 167-173.
[4] WANG Shubo, QIN Xiangpu, SHI Lei, ZHUANG Xupin, LI Zhenhuan. Preparation and properties of proton exchange membrane made from graphene oxide quantum dots / polyacrylonitrile nanofiber composites [J]. Journal of Textile Research, 2020, 41(06): 8-13.
[5] HAO Zhifen, XU Naiku, FENG Yan, DUAN Mengxin, XIAO Changfa. Preparation of fibrous membrane by blending polymethacrylate with polyacrylate and its oil / water separation property [J]. Journal of Textile Research, 2020, 41(06): 21-26.
[6] JIA Lin, WANG Xixian, TAO Wenjuan, ZHANG Haixia, QIN Xiaohong. Preparation and antibacterial property of polyacrylonitrile antibacterial composite nanofiber membranes [J]. Journal of Textile Research, 2020, 41(06): 14-20.
[7] WANG Tingting, LIU Liang, CAO Xiuming, WANG Qingqing. Preparation and photodynamic antimicrobial properties of hypocrellinpoly(methyl methacrylate-co-methacrylic acid) nanofibers [J]. Journal of Textile Research, 2020, 41(05): 1-7.
[8] SUN Fanchen, GUO Jing, YU Yue, ZHANG Sen. Preparation and properties of polyhydroxy fatty acid ester / sodium alginate composite electrospun nanofibers [J]. Journal of Textile Research, 2020, 41(05): 15-19.
[9] WU Heng, JIN Xin, WANG Wenyu, ZHU Zhengtao, LIN Tong, NIU Jiarong. Preparation and piezoelectric properties of polyacrylonitrile / sodium nitrate nanofiber membrane [J]. Journal of Textile Research, 2020, 41(03): 26-32.
[10] LI Guoqing, LI Pingping, LIU Hanlin, LI Ni. Preparation and properties of polyacrylonitrile / polyurethane transparent film [J]. Journal of Textile Research, 2020, 41(03): 20-25.
[11] LI Sijie, ZHANG Caidan. Preparation of poly(aspartic acid) based fiber hydrogel and its drug release behavior [J]. Journal of Textile Research, 2020, 41(02): 20-25.
[12] LIU Yujian, TAN Jing, CHEN Mingjun, YU Shaoyang, LI Haoyi, YANG Weimin. Research progress of electrospun nanofiber yarns [J]. Journal of Textile Research, 2020, 41(02): 165-171.
[13] WANG Jie, WANG Bin, DU Zongxi, LI Congju, LI Xiuyan, AN Boru. Preparation of sulfonated polyacrylonitrile nanofiber membranes and adsorption capacity for Cr(VI) and Pb(II) [J]. Journal of Textile Research, 2020, 41(01): 1-7.
[14] WU Qianqian, LI Ke, YANG Lishuang, FU Yijun, ZHANG Yu, ZHANG Haifeng. Preparation and properties of drug-loaded polyvinylidene fluoride wound dressings [J]. Journal of Textile Research, 2020, 41(01): 26-31.
[15] WU Jiajun, QIN Xiaohong. Preparation and characterization of cellulose acetate sub-micro fiber from burley tobacco stalk pulp [J]. Journal of Textile Research, 2019, 40(12): 1-8.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!