Journal of Textile Research ›› 2019, Vol. 40 ›› Issue (04): 38-43.doi: 10.13475/j.fzxb.20180503906

• Fiber Materials • Previous Articles     Next Articles

Influence of deep cryogenic treatment temperature on lithium electrical properties of SnSb/C nanofiber anode material

LIU Huijie, XIA Xin()   

  1. College of Textiles and Clothing, Xinjiang Unversity, Urumqi, Xinjiang 830046, China
  • Received:2018-05-16 Revised:2019-01-05 Online:2019-04-15 Published:2019-04-16
  • Contact: XIA Xin E-mail:xjxiaxin@163.com

Abstract:

In order to improve the electrochemical performance of SnSb/C nanofibers anodes for lithium-ion battery, the deep cryogenic treatment was used to modify the morphology of SnSb/C nanofibers, the influence of cryogenic temperature on the electrochemical performance was studied by comparing the changes of morphology, the specific surface area, the carbon contents and the charge-discharge curve of SnSb/C nanofibers. The results show that when the cryogenic temperature is -100 ℃, SnSb/C nanofiber has a rough surface with gullies. The cryogenic treatment accelerates the preoxidation reaction speed of polyacrylonitrile, so that the decomposition temperature decrease, the carbon content is up to 75.4% and the specific surface increases to 214.0 m2/g. Besides, owing to the influence of deep cryogenic treatment on the morphology of SnSb/C nanofibers, the battery capacity sustainably increases during the cycling of the lithium ion battery. After 120 cycles, the capacity retention ratio is still 123.5%.

Key words: SnSb/C nanofiber anode material, lithium battery, deep cryogenic treatment, cycle performance, electrochemical property

CLC Number: 

  • O646.21

Fig.1

Temperature control curve of cryogenic tank"

Fig.2

SEM images of SnSb/C nanofibers with different cryogenic treatment temperature. (a)Without cryogenic treatment;(b)Cryogenically temperature is -50 ℃; (c) Cryogenically temperature is -100 ℃; (d) Cryogenically temperature is -150 ℃"

Fig.3

TG curves of SnSb/C nanofibers precursor with different cryogenic treatment temperature"

Fig.4

Nitrogen adsorption/desorption isotherms of SnSb/C nanofibers treated at different cryogenic treatment temperature"

Fig.5

XRD patterns of SnSb/C nanofibers treated at different cryogenic treatment temperature"

Fig.6

Chage/dischage curves of SnSb/C nanofibers treated at different cryogenic treatment temperature. (a)Without cryogenic treatment; (b)Cryogenically temperature is -50 ℃;(c) Cryogenically temperature is -100 ℃;(d) Cryogenically temperature is -150 ℃"

Fig.7

Cycling efficiency curves of SnSb/C nanofibers treated at different cryogenic treatment temperature"

[1] 陆浩, 刘柏男, 褚赓, 等. 锂离子电池负极材料产业化技术进展[J]. 储能科学与技术, 2016,5(2):109-119.
LU Hao, LIU Bonan, ZHE Geng, et al. Technology review of anode materials for lithium ion batteries[J]. Energy Storage Science and Technology, 2016,5(2):109-119.
[2] 黄丽宏, 闵忠华, 张勤勇. 锂离子电池负极材料的研究现状及研究方向[J]. 西华大学学报(自然科学版), 2013,32(6):21-28.
HUANG Lihong, MIN Zhonghua, ZHANG Qinyong. The research status of anode materials in lithium ion bat-teries[J]. Journal of Xihua University(Natural Science Edition), 2013,32(6):21-28.
[3] 李娟, 汝强, 胡社军, 等. 锂离子电池SnSb/C复合负极材料的热碳还原法制备及电化学性能研究[J]. 物理学报, 2014,63(16):426-434.
LI Juan, RU Qiang, HU Shejun, et al. Lithium intercalation properties of SnSb/C composite in carb onthermal reduction as the anode material for lithium ion battery[J]. Acta Physica Sinica, 2014,63(16):426-434.
[4] 桂雪峰, 许凯, 彭军, 等. 静电纺丝技术在新能源电池中应用的研究进展[J]. 广州化学, 2016,41(1):59-65.
GUI Xuefeng, XU Kai, PENG Jun, et al. Progress of application of electrospinning technique in new energy battery[J]. Guangzhou Chemistry, 2016,41(1):59-65.
[5] 龚雪, 杨金龙, 姜玉林, 等. 静电纺丝技术在锂离子动力电池中的应用[J]. 化学进展, 2014,26(1):41-47.
GONG Xue, YANG Jinlong, JIANG Yulin, et al. The electrostatic spinning technology in the application of lithium ion power battery[J]. Progress in Chemistry, 2014,26(1):41-47.
[6] 焦鹏鹤. 超细晶YG10硬质合金的制备及深冷处理研究[D]. 重庆:西南大学, 2012: 20-21.
JIAO Penghe. Study of ultrafine-grain YG10 cementedcarbide preparation and deep cryogenic treatment[D]. Chongqing:Xinan University, 2012: 20-21.
[7] 陈鼎, 陈吉华, 严红革, 等. 深冷处理原理及其在工业上的应用[J]. 兵器材料科学与工程, 2003,26(3):68-72.
CHEN Ding, CHEN Jihua, YAN Hongge, et al. Mechanism & industrial applications of cryogenic treatment[J]. Ordnance Materials Science and Engineering, 2003,26(3):68-72.
[8] 杨叶. 合金元素和深冷处理对铸造铝硅合金性能及组织的影响[D]. 沈阳:沈阳工业大学, 2015: 26-40.
YANG Ye. The effect of alloy element and cryogenic treatment on Al-Si alloy mechanical properties and microstructure[D]. Shenyang:Shenyang University of Technology, 2015: 26-40.
[9] XIA Xin, LI Zhiyong, ZHOU Huimin, et al. The effect of deep cryogenic treatment on SnSb/C nanofibers anodes for Li-ion battery[J]. Electrochimica Acta, 2016,222:765-772.
[10] 瞿梅梅. 预氧化碳化工艺对电纺PAN基碳纤维结构性能的影响[D]. 北京:北京化工大学, 2016: 6-14.
QU Meimei. Effects of stabilization and carbonization on structural and mechnical properties of electrospun PAN-based carbon fibers and structures of precursor nanofibers[D]. Beijing: Beijing University of Chemical Technology, 2016: 6-14.
[11] CAI J, LI Z, SHEN P K. Porous SnS nanorods/carbon hybrid materials as highly stable and high capacity anode for Li-ion batteries[J]. ACS Appl Mater Interfaces, 2012,4(8):4093-4098.
pmid: 22852819
[12] LI H, ZHU G, HUANG X, et al. Synjournal and electrochemical performance of dendrite-like nanosized SnSb alloy prepared by co-precipitation in alcohol solution at low temperature[J]. Journal of Materials Chemistry, 2000,10(3):693-696.
[13] 李可雨. 不同Sn含量无定形Sn/C纳米纤维负极材料的制备及其性能优化[D]. 北京:北京化工大学, 2012: 36-42.
LI Keyu. Study of the preparation and properperties ofamorphous Sn/C nanofibers anode materials with different Sn content[D]. Beijing:Beijing University of Chemical Technology, 2012: 36-42.
[14] PARK C M, JEON K J. Porous structured SnSb/C nanocomposites for Li-ion battery anodes[J]. Chemical Communications, 2011,47(7):2122-2124.
pmid: 21180761
[1] LI Yuzhou, ZHANG Yufan, ZHOU Qingqing, CHEN Guoqiang, XING Tieling. Preparation and electrochemical properties of MnO2 / graphene / cotton fabric composite electrode [J]. Journal of Textile Research, 2020, 41(01): 96-101.
[2] ZHAO Jinyang, SUN Yao, ZHANG Xin, ZHANG Yueyue, ZHAO Haoyue, XIA Xin. Morphology and structure reconstruction and mechanism of Sn/C nanofibers anode for lithium battery [J]. Journal of Textile Research, 2019, 40(08): 7-13.
[3] CHEN Yue, ZHAO Yonghuan, CHU Zhudan, ZHUANG Zhishan, QIU Linlin, DU Pingfan. Research progress of flexible lithium battery electrodes based on carbon fibers and their fabrics [J]. Journal of Textile Research, 2019, 40(02): 173-180.
[4] . Preparation and properties of orientation reinforced composite separator for lithium-ion battery [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(07): 8-14.
[5] . Influence of deep cryogenic treatment on SnSb/carbon nanofibers morphologies and its mechanism [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(03): 23-27.
[6] . Preparation of core-shell Sn/C encapsulated carbon nanofibers and Its application as anode materials for lithium-ion battery [J]. JOURNAL OF TEXTILE RESEARCH, 2014, 35(8): 1-0.
[7] . Preparation and characterization of conductive polypyrrole-nanocellulose crystal composite materials [J]. JOURNAL OF TEXTILE RESEARCH, 2013, 34(10): 15-0.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!