Journal of Textile Research ›› 2019, Vol. 40 ›› Issue (04): 38-43.doi: 10.13475/j.fzxb.20180503906
• Fiber Materials • Previous Articles Next Articles
CLC Number:
[1] | 陆浩, 刘柏男, 褚赓, 等. 锂离子电池负极材料产业化技术进展[J]. 储能科学与技术, 2016,5(2):109-119. |
LU Hao, LIU Bonan, ZHE Geng, et al. Technology review of anode materials for lithium ion batteries[J]. Energy Storage Science and Technology, 2016,5(2):109-119. | |
[2] | 黄丽宏, 闵忠华, 张勤勇. 锂离子电池负极材料的研究现状及研究方向[J]. 西华大学学报(自然科学版), 2013,32(6):21-28. |
HUANG Lihong, MIN Zhonghua, ZHANG Qinyong. The research status of anode materials in lithium ion bat-teries[J]. Journal of Xihua University(Natural Science Edition), 2013,32(6):21-28. | |
[3] | 李娟, 汝强, 胡社军, 等. 锂离子电池SnSb/C复合负极材料的热碳还原法制备及电化学性能研究[J]. 物理学报, 2014,63(16):426-434. |
LI Juan, RU Qiang, HU Shejun, et al. Lithium intercalation properties of SnSb/C composite in carb onthermal reduction as the anode material for lithium ion battery[J]. Acta Physica Sinica, 2014,63(16):426-434. | |
[4] | 桂雪峰, 许凯, 彭军, 等. 静电纺丝技术在新能源电池中应用的研究进展[J]. 广州化学, 2016,41(1):59-65. |
GUI Xuefeng, XU Kai, PENG Jun, et al. Progress of application of electrospinning technique in new energy battery[J]. Guangzhou Chemistry, 2016,41(1):59-65. | |
[5] | 龚雪, 杨金龙, 姜玉林, 等. 静电纺丝技术在锂离子动力电池中的应用[J]. 化学进展, 2014,26(1):41-47. |
GONG Xue, YANG Jinlong, JIANG Yulin, et al. The electrostatic spinning technology in the application of lithium ion power battery[J]. Progress in Chemistry, 2014,26(1):41-47. | |
[6] | 焦鹏鹤. 超细晶YG10硬质合金的制备及深冷处理研究[D]. 重庆:西南大学, 2012: 20-21. |
JIAO Penghe. Study of ultrafine-grain YG10 cementedcarbide preparation and deep cryogenic treatment[D]. Chongqing:Xinan University, 2012: 20-21. | |
[7] | 陈鼎, 陈吉华, 严红革, 等. 深冷处理原理及其在工业上的应用[J]. 兵器材料科学与工程, 2003,26(3):68-72. |
CHEN Ding, CHEN Jihua, YAN Hongge, et al. Mechanism & industrial applications of cryogenic treatment[J]. Ordnance Materials Science and Engineering, 2003,26(3):68-72. | |
[8] | 杨叶. 合金元素和深冷处理对铸造铝硅合金性能及组织的影响[D]. 沈阳:沈阳工业大学, 2015: 26-40. |
YANG Ye. The effect of alloy element and cryogenic treatment on Al-Si alloy mechanical properties and microstructure[D]. Shenyang:Shenyang University of Technology, 2015: 26-40. | |
[9] | XIA Xin, LI Zhiyong, ZHOU Huimin, et al. The effect of deep cryogenic treatment on SnSb/C nanofibers anodes for Li-ion battery[J]. Electrochimica Acta, 2016,222:765-772. |
[10] | 瞿梅梅. 预氧化碳化工艺对电纺PAN基碳纤维结构性能的影响[D]. 北京:北京化工大学, 2016: 6-14. |
QU Meimei. Effects of stabilization and carbonization on structural and mechnical properties of electrospun PAN-based carbon fibers and structures of precursor nanofibers[D]. Beijing: Beijing University of Chemical Technology, 2016: 6-14. | |
[11] |
CAI J, LI Z, SHEN P K. Porous SnS nanorods/carbon hybrid materials as highly stable and high capacity anode for Li-ion batteries[J]. ACS Appl Mater Interfaces, 2012,4(8):4093-4098.
pmid: 22852819 |
[12] | LI H, ZHU G, HUANG X, et al. Synjournal and electrochemical performance of dendrite-like nanosized SnSb alloy prepared by co-precipitation in alcohol solution at low temperature[J]. Journal of Materials Chemistry, 2000,10(3):693-696. |
[13] | 李可雨. 不同Sn含量无定形Sn/C纳米纤维负极材料的制备及其性能优化[D]. 北京:北京化工大学, 2012: 36-42. |
LI Keyu. Study of the preparation and properperties ofamorphous Sn/C nanofibers anode materials with different Sn content[D]. Beijing:Beijing University of Chemical Technology, 2012: 36-42. | |
[14] |
PARK C M, JEON K J. Porous structured SnSb/C nanocomposites for Li-ion battery anodes[J]. Chemical Communications, 2011,47(7):2122-2124.
pmid: 21180761 |
|