Journal of Textile Research ›› 2019, Vol. 40 ›› Issue (8): 109-116.doi: 10.13475/j.fzxb.20180504908

• Dyeing and Finishing & Chemicals • Previous Articles     Next Articles

Influence of graphene oxide/polyaniline functional film on electromagnetic shielding property of cotton fabrics

ZOU Lihua1(), XU Zhenzhen1, SUN Yanyan1, WANG Tairan1, QIU Yiping2   

  1. 1. International Cooperation Research Center of Textile Structure Composite Materials, Anhui Polytechnic University,Wuhu, Anhui 241000, China
    2. College of Textiles, Donghua University, Shanghai 201620, China
  • Received:2018-05-21 Revised:2019-05-03 Online:2019-08-15 Published:2019-08-16

Abstract:

In order to prepare lightweight and efficient electromagnetic shielding fabric of absorption-type, a graphene oxide (GO)/polyaniline (PANI) functional film was coated on cotton fabric using layer-by-layer assembling method. The influences of the concentration of aniline (AN) monomer, the concentration of GO and the number of assembly layers on the electrical properties and electromagnetic shielding properties of cotton fabrics were studied. The absorptivity, reflectivity, and shielding effectiveness due to absorption and reflection were analyzed. The results show that the increase of AN concentration and the number of assembling bilayer improve the electromagnetic shielding effectiveness of the fabric, but with the increase of GO concentration, the shielding effectiveness value of the fabric increases first and then decreases, the shielding effectiveness of fabric with 4 bilayers of GO/PANI reaches 19.91 dB, which could shield 98.98% of electromagnetic energy, the absorptivity of the fabric is 57.63%, and the reflectivity is 41.35%, the main shielding mechanism is absorption.

Key words: polyaniline, graphene oxide, layer-by-layer assembly, cotton fabric, electromagnetic shielding property, functional film

CLC Number: 

  • TS101.8

Fig.1

FT-IR spectra of cotton, PANI-cotton and GO/PANI-cotton fabrics"

Fig.2

SEM images of cotton fiber with and without GO/PANI under various AN concentration,GO concentration and BL(×5 000). (a) Raw cotton; (b) AN-0.5; (c) AN-0.7; (d) AN-0.9; (e) GO-0.4; (f) GO-0.8; (g) 2 layers; (h) 4 layers"

Tab.1

Effect of AN concentration on loading, thickness and surface resistance for cotton fabric with GO/PANI coating"

AN浓度/
(mol·L-1)
上载量/
(mg·cm-2)
厚度/
mm
表面电阻/
(Ω·□-1)
0.3 1.67±0.09 0.439±0.023 1 237.5±92.3
0.5 2.94±0.08 0.457±0.029 414.7±23.7
0.7 3.81±0.13 0.478±0.031 310.4±18.5
0.9 4.06±0.16 0.513±0.038 197.9±11.3

Tab.2

Effect of GO concentration on loading, thickness and surface resistance for cotton fabric with GO/PANI coating"

GO质量浓
度/(g·L-1)
上载量/
(mg·cm-2)
厚度/
mm
表面电阻/
(Ω·□-1)
0.2 0.87±0.09 0.437±0.021 356.8±19.8
0.4 2.19±0.08 0.461±0.028 216.7±13.7
0.6 3.81±0.13 0.478±0.031 310.4±18.5
0.8 4.36±0.16 0.496±0.035 874.5±45.9

Tab.3

Effect of bilayer number on loading, thickness and surface resistance for cotton fabric with GO/PANI film"

组装
层数
上载量/
(mg·cm-2)
厚度/
mm
表面电阻/
(Ω·□-1)
1 2.19±0.08 0.461±0.028 216.7±13.7
2 4.44±0.11 0.506±0.051 175.9±9.1
3 6.56±0.17 0.558±0.059 115.3±7.6
4 8.77±0.21 0.607±0.053 66.1±4.8

Fig.3

Relationship between AN concentration and SSE value of cotton fabric with GO/PANI coating"

Fig.4

Relationship between GO concentration and SSE value of cotton fabric with GO/PANI coating"

Fig.5

Relationship between number of assembling and index of electromagnetic shielding of cotton fabric with GO/PANI coating"

Fig.6

Relationship between absorptivity, reflectivity and transmissivity of cotton fabric with different number of bilayer GO/PANI"

Tab.4

Durability of electromagnetic shielding for cotton fabric with GO/PANI functional film under different conditions"

样品名称 屏蔽效能/dB
未洗涤参照样 19.91±2.00
去离子水中浸泡24 h 19.35±1.92
去离子水中超声30 min 19.05±2.11
洗衣液中超声30 min 18.91±2.04
[1] 曲华洋, 谢春萍, 徐伯俊 , 等. 全聚赛络纺双芯纱及其弹性电磁屏蔽针织物的制备[J]. 纺织学报, 2018,39(6):52-58.
QU Huayang, XIE Chunping, XU Bojun , et al. Preparation of elastic radiation resistant textile based on double filament core-spun yarn[J]. Journal of Textile Research, 2018,39(6):52-58.
[2] 段永洁, 谢春萍, 刘新金 . 棉/不锈钢长丝机织物的电磁屏蔽及折皱回复性能[J]. 纺织学报, 2016,37(9):31-36.
DUAN Yongjie, XIE Chunping, LIU Xinjin . Electromagnetic shielding and wrinkle recovery property of cotton/stainless steel filament woven fabric[J]. Journal of Textile Research, 2016,37(9):31-36.
[3] 师艳丽, 李娜娜, 付元静 , 等. 用于纺织品表面改性的磁控溅射技术研究进展[J]. 纺织学报, 2016,37(4):165-169.
SHI Yanli, LI Nana, FU Yuanjing , et al. Research pro-gress of magnetron sputtering in textiles[J]. Journal of Textile Research, 2016,37(4):165-169.
[4] 缪润伍, 金丽华, 魏祺煜 , 等. 多轴向导电芳纶增强复合材料及其电磁屏蔽性能[J]. 纺织学报, 2019,40(2):100-104.
MIAO Runwu, JIN Lihua, WEI Qiyu , et al. Preparation and electromagnetic shielding property of conductive poly(p-phenylene terephamide) of reinforced composite materials[J]. Journal of Textile Research, 2019,40(2):100-104.
[5] TUNAKOVA V, GREGR J, TUNAK M , et al. Functional polyester fabric/polypyrrole polymer composites for electromagnetic shielding: optimization of process parameters[J]. Journal of Industrial Textiles, 2018,47(5):686-711.
doi: 10.1177/1528083716667262
[6] ZOU L, LAN C, LI X , et al. Superhydrophobization of cotton fabric with multiwalled carbon nanotubes for durable electromagnetic interference shielding[J]. Fibers and Polymers, 2015,16(10):2158-2164.
doi: 10.1007/s12221-015-5436-1
[7] YUAN Y, YIN W, YANG M , et al. Lightweight, flexible and strong core-shell non-woven fabrics covered by reduced graphene oxide for high-performance electromagnetic interference shielding[J]. Carbon, 2018,130:59-68.
doi: 10.1016/j.carbon.2017.12.122
[8] HAJI A, RAHBAR R, SHOUSHTARI A . Improved microwave shielding behavior of carbon nanotube-coated PET fabric using plasma technology[J]. Applied Surface Science, 2014,311:593-601.
doi: 10.1016/j.apsusc.2014.05.113
[9] 张松林, 邹梨花, 张梓萌 , 等. 氧化石墨烯多层膜在棉织物上的层层组装及其电磁屏蔽性能[J]. 东华大学学报(自然科学版), 2016,42(1):30-34,39.
ZHANG Songlin, ZOU Lihua, ZHANG Zimeng , et al. Graphene oxide multilayer films on cotton fabrics through layer-by-layer assembly and its electromagnetic shielding property[J]. Journal of Donghua University(Natural Science Edition), 2016,42(1):30-34, 39.
[10] ESMAEELI A, GHAFFARINEJAD A, ZAHEDI A , et al. Copper oxide-polyaniline nanofiber modified fluorine doped tin oxide (FTO) electrode as non-enzymatic glucose sensor[J]. Sensors and Actuators B: Chemical, 2018,266:294-301.
doi: 10.1016/j.snb.2018.03.132
[11] AHAD I, HARUN S, GAN S , et al. Polyani-line (PANI) optical sensor in chloroform detection[J]. Sensors and Actuators B: Chemical, 2018,261:97-105.
doi: 10.1016/j.snb.2018.01.082
[12] LI M, ZHOU S . Alpha-Fe2O3/polyaniline nanocom-posites as an effective catalyst for improving the electrochemical performance of microbial fuel cell[J]. Chemical Engineering Journal, 2018,339:539-546.
doi: 10.1016/j.cej.2018.02.002
[13] LIU H, ZOU Y, HUANG L , et al. Enhanced electrochemical performance of sandwich-structured polyaniline-wrapped silicon oxide/carbon nanotubes for lithium-ion batteries[J]. Applied Surface Science, 2018,442:204-212.
doi: 10.1016/j.apsusc.2018.02.023
[14] SHI M, BAI M, LI B . Synjournal of mesoporous crosslinked polyaniline using SDS as a soft template for high-performance supercapacitors[J]. Journal of Materials Science, 2018,53(13):9731-9741.
doi: 10.1007/s10853-018-2280-x
[15] JOSEPH N, VARGHESE J, SEBASTIAN M . A facile formulation and excellent electromagnetic absorption of room temperature curable polyaniline nanofiber based inks[J]. Journal of Materials Chemistry C, 2016,4(5):999-1008.
doi: 10.1039/C5TC03080C
[16] KOH Y, MOKHTAR N, PHANG S . Effect of microwave absorption study on polyaniline nanocomposites with untreated and treated double wall carbon nanotubes[J]. Polymer Composites, 2018,39(4):1283-1291.
doi: 10.1002/pc.v39.4
[17] JIANG L, SYED J, GAO Y , et al. Electrodeposition of Ni(OH)2 reinforced polyaniline coating for corrosion protection of 304 stainless steel[J]. Applied Surface Science, 2018,440:1011-1021.
doi: 10.1016/j.apsusc.2018.01.145
[18] HOGHOGHIFARD S, MOKHTARI H, DEHGHANI S . Improving EMI shielding effectiveness and dielectric properties of polyaniline-coated polyester fabric by effective doping and redoping procedures[J]. Journal of Industrial Textiles, 2018,47(5):587-601.
doi: 10.1177/1528083716665630
[19] ENGIN F, USTA I . Development and characterisation of polyaniline/polyamide (PANI/PA) fabrics for electromagnetic shielding[J]. Journal of The Textile Institute, 2015,106(8):872-879.
doi: 10.1080/00405000.2014.950085
[20] ZHAO H, HOU L, BI S , et al. Enhanced X-Band electromagnetic-interference shielding performance of layer-structured fabric-supported polyaniline/cobalt-nickel coatings[J]. Acs Applied Materials & Interfaces, 2017,38(9):33059-33070.
[21] ZOU L, ZHANG S, LI X , et al. Nanocomposites: step-by-step strategy for constructing multilayer structured coatings toward high-efficiency electromagnetic interference shielding[J]. Advanced Materials Interfaces, 2016,3(5). DOI: 10.1002/admin.201670019.
doi: 10.1002/admi.201670022 pmid: 27088067
[22] SAINI P, CHOUDHARY V . Conducting polymer coated textile based multilayered shields for suppression of microwave radiations in 8.2-12.4 GHz range[J]. Journal of Applied Polymer Science, 2013,129(5):2832-2839.
doi: 10.1002/app.38994
[23] GAUTAM V, SINGH K, YADAV V . Preparation and characterization of green-nano-composite material based on polyaniline, multiwalled carbon nano tubes and carboxymethyl cellulose: for electrochemical sensor applications[J]. Carbohydrate Polymers, 2018,189:218-228.
doi: 10.1016/j.carbpol.2018.02.029 pmid: 29580402
[24] RYBICKI T, STEMPIEN Z, RYBICKI E , et al. EMI shielding effectiveness of polyacrylonitrile fabric with polyaniline deposition by reactive ink-jet printing and model approach[J]. IEEE Transactions on Electromagnetic Compatibility, 2016,58(4):1025-1032.
doi: 10.1109/TEMC.15
[25] TISSERA N, WIJESENA R, RATHNAYAKE S , et al. Heterogeneous in situ polymerization of polyani-line (PANI) nanofibers on cotton textiles: improved electrical conductivity, electrical switching, and tuning properties[J]. Carbohydrate Polymers, 2018,186:35-44.
doi: 10.1016/j.carbpol.2018.01.027 pmid: 29455996
[26] 梁然然, 肖红, 王妮 . 双层及多层电磁屏蔽织物的屏蔽效能[J]. 纺织学报, 2017,38(9):51-58.
LIANG Ranran, XIAO Hong, WANG Ni . Shielding effectiveness of double and multilayer electromagnetic shielding fabric[J]. Journal of Textile Research, 2017,38(9):51-58.
[27] JI J, LI R, LI H , et al. Phytic acid assisted fabrication of graphene/polyaniline composite hydrogels for high-capacitance supercapacitors[J]. Composites Part B: Engineering, 2018,155:132-137.
doi: 10.1016/j.compositesb.2018.08.037
[1] WANG Bo, FAN Lihua, YUAN Yun, YIN Yunjie, WANG Chaoxia. Preparation and electric storage performance of stretchable polypyrrole / cotton knitted fabric [J]. Journal of Textile Research, 2020, 41(10): 101-106.
[2] LI Liang, LIU Jingfang, HU Zedong, GENG Changjun, LIU Rangtong. Graphene oxide loading on polyester fabrics and antistatic properties [J]. Journal of Textile Research, 2020, 41(09): 102-107.
[3] ZHAO Zhiqi, LI Qiujin, SUN Yuejing, GONG Jixian, LI Zheng, ZHANG Jianfei. Application of magnetic-graphene oxide / poly(allylamine hydrochloride) microcapsules for adsorption of dyes [J]. Journal of Textile Research, 2020, 41(07): 109-116.
[4] LIU Guojin, SHI Feng, CHEN Xinxiang, ZHANG Guoqing, ZHOU Lan. Preparation of polyurethane / phase change wax functional finishing agents for heat storage and temperature regulation and their applications on cotton fabrics [J]. Journal of Textile Research, 2020, 41(07): 129-134.
[5] WANG Shubo, QIN Xiangpu, SHI Lei, ZHUANG Xupin, LI Zhenhuan. Preparation and properties of proton exchange membrane made from graphene oxide quantum dots / polyacrylonitrile nanofiber composites [J]. Journal of Textile Research, 2020, 41(06): 8-13.
[6] CHENG Shijie, WANG Chenyang, ZHANG Hongwei, ZUO Danying. Effect of boron nitrogen doped carbon dots on ultraviolet-protection of cotton fabrics [J]. Journal of Textile Research, 2020, 41(06): 93-98.
[7] LI Liping, WU Daoyi, ZHAN Yikai, HE Min. Review on carbon fiber surface modification using electrophoretic deposition of carbon nanotubes and graphene oxide [J]. Journal of Textile Research, 2020, 41(06): 168-173.
[8] ZHOU Qingqing, CHEN Jiayi, QI Zhenming, CHEN Weijian, SHAO Jianzhong. Preparation and characterization of flame retardant and antibacterial cotton fabric [J]. Journal of Textile Research, 2020, 41(05): 112-120.
[9] HU Chengye, MIAO Runwu, HAN Xiao, HONG Jianhan, GIL Ignacio. Effect of polyvinyl alcohol on durability of polyaniline conductive layer on poly(p-phenylene terephthamide) yarn surface [J]. Journal of Textile Research, 2020, 41(04): 91-97.
[10] WU Yingxin, HU Chengye, ZHOU Xiaoya, HAN Xiao, HONG Jianhan, GIL Ignacio. Strain sensing property of flexible wearable spandex / polyaniline / polyurethane composites [J]. Journal of Textile Research, 2020, 41(04): 21-25.
[11] TAN Lin, SHI Yidong, ZHOU Wenya. Study on enhancement of hydrophobicity treatment of cotton fabrics using silica sol [J]. Journal of Textile Research, 2020, 41(04): 106-111.
[12] WEI Tengxiang, LI Min, PENG Hongyun, FU Shaohai. Relationship between open-width mercerization condition and loop structure of weft plain-knitted cotton fabrics [J]. Journal of Textile Research, 2020, 41(04): 98-105.
[13] WANG Jiankun, JIANG Xiaodong, GUO Jing, YANG Lianhe. Research progress of functionalized graphene oxide adsorption materials [J]. Journal of Textile Research, 2020, 41(04): 167-173.
[14] ZHAO Bing, HUANG Xiaocui, QI Ning, ZHONG Zhou, CHE Mingguo, GE Liangliang. Research progress of antibacterial cotton fabric treated with silver nanoparticles based on covalent bond [J]. Journal of Textile Research, 2020, 41(03): 188-196.
[15] MA Junzhi, WANG Dong, FU Shaohai. Preparation and properties of flame-retardant viscose fiber / dithiopyrophosphate incorporated with graphene oxide [J]. Journal of Textile Research, 2020, 41(03): 15-19.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. JOURNAL OF TEXTILE RESEARCH, 1987, 8(01): 9 .
[2] . [J]. JOURNAL OF TEXTILE RESEARCH, 1987, 8(11): 48 -50 .
[3] . [J]. JOURNAL OF TEXTILE RESEARCH, 1991, 12(11): 30 -32 .
[4] . [J]. JOURNAL OF TEXTILE RESEARCH, 1993, 14(04): 26 -30 .
[5] . [J]. JOURNAL OF TEXTILE RESEARCH, 1985, 6(08): 40 -42 .
[6] . [J]. JOURNAL OF TEXTILE RESEARCH, 1985, 6(09): 64 .
[7] . [J]. JOURNAL OF TEXTILE RESEARCH, 1991, 12(04): 33 -35 .
[8] JIN Chenyi. Designing fashion stores from standpoint of lifestyle and visual merchandizing[J]. JOURNAL OF TEXTILE RESEARCH, 2011, 32(2): 121 -126 .
[9] WU Ye-fang;HE Tian-hong;YAO Jin-bo;GUO Jun-wei;LIANG Cheng-biao. Development of the single-side moisture transported and dry-fast fabric[J]. JOURNAL OF TEXTILE RESEARCH, 2006, 27(6): 94 -96 .
[10] . [J]. JOURNAL OF TEXTILE RESEARCH, 1988, 9(11): 33 -34 .