Journal of Textile Research ›› 2019, Vol. 40 ›› Issue (10): 62-67.doi: 10.13475/j.fzxb.20180505506

• Textile Engineering • Previous Articles     Next Articles

Drafting mechanism and application of spun yarn produced by large diameter soft rubber-covered roll

WEI Yanhong1, XIE Chunping1, LIU Xinjin1(), SU Xuzhong1, YIN Gaowei2   

  1. 1. Key Laboratory of Eco-Textiles (Jiangnan University), Ministry of Education, Wuxi, Jiangsu 214122, China
    2. Jiangsu Grouri Energy Saving Technology Co., Ltd., Wuxi, Jiangsu 214199, China
  • Received:2018-05-22 Revised:2019-03-10 Online:2019-10-15 Published:2019-10-23
  • Contact: LIU Xinjin E-mail:liuxinjin2006@163.com

Abstract:

In order to improve the yarn quality and reduce the consumption, new drafting elements such as large diameter soft rubber-covered rolls were used in the production of spun yarn. The drafting principle and application mechanism were analyzed. By using large diameter soft rubber-covered rolls, configuring reasonable process parameters, increasing the roller distance and using the central-top roller with low tenacity the butadiene-acrylonitrile rubber-covered roll instead of the MR carbon fiber roller and increasing the diameter of roller, and the pressure on the cradle is reduced, and the purpose of energy saving on the basis of improving the yarn quality was also achieved. Through the different production of yarns with spinning frame, the change of the yarn quality under the condition of light pressurization of the large diameter soft rubber-covered roll was studied with the increase of the draw ratio of the yarn. The results show that the large diameter soft rubber-covered roll of the spun yarn has better advantage in heavy basis roving, the large and superhigh drafting of spinning, the Siro-spinning and other varieties. Yarn detail is significantly reduced. At the same time, it can also solve the special mechanical wave problem of the spun yarn.

Key words: spinning technology, spinning drafting, parts configuration at draft zone, rubber-covered roll with large diameter, efficient spinning process, large drafting

CLC Number: 

  • TS103

Fig.1

Longitudinal pressure distribution curve of lower gauze held by roller jaw"

Fig.2

Lateral pressure distribution in yarn under roller jaws. (a) High tenacity rubber-covered roll; (b) Soft rubber-covered roll"

Fig.3

Drafting element configuration"

Fig.4

Sliver transverse friction distribution. (a) Carbon fiber press;(b)Butadiene-acrylonitrile roller press"

Tab.1

Yarn data comparison for different diameter of plastic roller"

中上胶辊
直径/mm
纱线线
密度/tex
条干CV
值/%
毛羽
H值
条干
CVb/%
疵点/(个·km-1)
-40%细节 -50%细节 +50%粗节 +200%棉结
28.2 22.4 10.44 4.30 1.82 14 0 6 24
28.4 22.4 10.34 4.17 1.92 8 0 4 21
28.6 22.4 10.20 4.27 1.99 10 0 5 20

Tab.2

Comparison of traditional and new technology for producing yarn of different varieties"

牵伸元
件配置
品种 锭速/
(r·min-1)
牵伸
倍数
条干CV
值/%
毛羽
H
条干
CVb/%
疵点/(个·km-1)
-40%细节 -50%细节 +50%粗节 +200%棉结
传统方式 C18.2 tex 16 500 46.06 14.93 4.12 3.40 222 7 214 392
C18.2 tex 16 500 46.06 14.25 4.41 2.95 212 4 129 294
传统方式 赛络纺C32.4 tex 13 500 52.22 12.81 5.11 2.52 44 0 76 76
赛络纺C32.4 tex 13 500 52.22 11.32 5.52 2.34 14 0 28 60
传统方式 赛络纺C27.8 tex 14 000 61.44 13.91 4.64 3.53 98 2 122 92
赛络纺C27.8 tex 14 000 61.44 12.00 4.92 2.82 38 0 28 79
传统方式 赛络纺JC27.8 tex 14 500 46.49 10.08 3.82 2.98 4 0 8 15
赛络纺JC27.8 tex 14 500 46.49 9.69 4.07 2.47 4 0 3 7
传统方式 赛络纺JC22.4 tex 14 800 55.42 11.35 3.98 3.96 32 2 14 34
赛络纺JC22.4 tex 14 800 55.42 10.39 4.09 3.45 8 0 10 25
传统方式 赛络纺JC18.2 tex 15 800 69.97 13.30 3.39 4.22 148 6 62 89
赛络纺JC18.2 tex 15 800 69.97 11.87 3.62 2.92 48 2 19 46

Fig.5

Spinning mechanical wave. (a) Special mechanical wave;(b) Without special mechanical wave"

Fig.6

Relationship between drafting force and drafting"

Tab.3

JC18.2 tex quality data using different processes and drafting elements"

牵伸元件 细纱后区
牵伸倍数
粗纱捻
系数
条干
CV值/%
疵点/(个·km-1) 备注
-40%细节 -50%细节 +50%粗节 +200%棉结
传统方式 1.21 120 11.69 29 0 17 79 有机械波
传统方式 1.21 110 11.89 33 0 22 100 有机械波
传统方式 1.25 120 11.97 36 0 21 95 有机械波
传统方式 1.25 114 11.78 30 1 24 83 机械波比较小
传统方式 1.25 117 11.95 33 0 17 91 有机械波
传统方式 1.25 110 12.35 59 0 30 104 无机械波,条干差
新方式 1.21 130 11.04 20 0 10 32 无机械波
[1] 赵伟. 应用高效工艺生产高支纱的生产实践[J]. 纺织导报, 2015(3):54-55.
ZHAO Wei. Produing high-count yarn with high-efficiency process[J]. China Textile Leader, 2015 (3):54-55.
[2] 缪定蜀. 细纱机高速高效工艺及器材配置的技术探讨[J]. 纺织器材, 2015,42(5):53-57.
MIAO Dingshu. Technical probing into high speed and high efficiency technology and accessories configuration on the spinning frame[J]. Textile Accessories, 2015,42(5):53-57.
[3] 谢春萍, 王建坤, 徐伯俊. 纺纱工程[M]. 北京: 中国纺织出版社, 2012: 182.
XIE Chunping, WANG Jiankun, XU Bojun. Spinning Engineering [M]. Beijing: China Textile & Apparel Press, 2012: 182.
[4] 唐文辉, 朱鹏. 现代棉纺牵伸的理论与实践[M]. 北京: 中国纺织出版社. 2012: 29.
TANG Wenhui, ZHU Peng. Modern Cotton Spinning Drafting Theory and Practice [M]. Beijing: China Textile & Apparel Press, 2012: 29.
[5] 张丽娟, 邢国江. 棉纺高效工艺机理分析[J]. 现代纺织技术, 2010,18(4):30-33.
ZHANG Lijuan, XING Guojiang. Analysis of high efficient cotton spinning technology[J]. Advanced Textile Technology, 2010,18(4):30-33.
[6] 陆惠文, 倪远. “陆S纺纱工艺”的细纱牵伸机理初探[J]. 辽东学院学报(自然科学版), 2016,23(2):77-87.
LU Huiwen, NI Yuan. “Spinning mechanism of Lu S spinning process”[J]. Journal of Eastern Liaoning University (Natural Science Edition), 2016,23(2):77-87.
[7] 代丽梅, 谢春萍, 刘新金, 等. 莱赛尔纱超大牵伸纺纱工艺的优化[J]. 纺织学报, 2016,37(3):25-30.
DAI Limei, XIE Chunping, LIU Xinjin, et al. Process optimization of superhigh draft spining of lyocell yans[J]. Journal of Textile Research, 2016,37(3):25-30.
[8] 陈玉峰, 陆振挺. 细纱大直径胶辊的作用机理及纺纱效果[J]. 棉纺织技术, 2015,43(1):9-12.
CHEN Yufeng, LU Zhenting. Mechanism and spinning effect of spinning larger diameter rubber-covered roll[J]. Cotton Textile Technology, 2015,43(1):9-12.
[9] WU Tingting, XIE Chunping, LIU Xinjin, et al. A modified ring spinning system with various diagonal yarn path offsets[J]. Procedia Engineering, 2011(18):1-6.
[10] 谢家祥. 浅析环锭纺纱牵伸问题与应用[J]. 棉纺织技术, 2017,45(3):16-21.
XIE Jiaxiang. Analysis of ring spinning drafting problem and application[J]. Cotton Textile Technology, 2017,45(3):16-21.
[1] . Microfluidic spinning technology for multifunctional nanofibers and application and research progress thereof [J]. Journal of Textile Research, 2018, 39(12): 158-165.
[2] . Development of stainless steel fiber/cotton composite yarn and its performances [J]. JOURNAL OF TEXTILE RESEARCH, 2014, 35(7): 36-0.
[3] . Industrialized green spinning technology and application of pure chitosan fibers [J]. JOURNAL OF TEXTILE RESEARCH, 2014, 35(2): 157-0.
[4] HUANG Lixin;ZHU Chunxiang. Solospun technology and its product properties [J]. JOURNAL OF TEXTILE RESEARCH, 2007, 28(5): 35-37.
[5] XIE Chunping;YANG Lili;SU Xuzhong;FENG Jie. Analysis of compact effect and yarn structure of compact Siro spinning [J]. JOURNAL OF TEXTILE RESEARCH, 2007, 28(3): 9-12.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!