Journal of Textile Research ›› 2019, Vol. 40 ›› Issue (07): 103-107.doi: 10.13475/j.fzxb.20180506605

• Dyeing and Finishing & Chemicals • Previous Articles     Next Articles

Application of low temperature plasma in surface modification of polyester fiber

ZHANG Huan1, YAN Jun1(), WANG Xiaowu1, JIAO Andong1, LI Hong1, ZHENG Laijiu1, HE Tingting2   

  1. 1. School of Textile and Material Engineering, Dalian Polytechnic University, Dalian, Liaoning 116034, China
    2. Patent Examination Cooperation(Beijing) Center of the Patent Office, China National Intellectual Property Administration, Beijing 100160, China
  • Received:2018-05-28 Revised:2019-04-17 Online:2019-07-15 Published:2019-07-25
  • Contact: YAN Jun E-mail:yanjun@dlpu.edu.cn

Abstract:

In view of the problem of poor hydrophilicity of polyester, the surface modification of polyester fabric was carried out by low temperature plasma. The influence of dielectric barrier discharge plasma on the performance of polyester fabric was investigated under the pressure of 300 Pa and power of 5.5 W. The dynamic friction coefficient, strength, hydrophilicity and other properties of the treated fabric were measured, and the microscopic morphology and surface chemical composition of the polyester fiber were characterized. The mechanism of plasma-modified polyester was proposed. The results show that the plasma etches the polyester surface to generate cracks and voids on the surface of the fiber, which increases the surface area of the polyester fiber. The dynamic friction coefficient increases with the increase of plasma treatment time, and the strength decreases by up to 25% with the increase of treatment time. The capillary effect of the treated fabric is increased by 75%, the contact angle to water is reduced by 33.3%, and the surface hydroxyl of the polyester is increased, which effectively improves the hygroscopicity and hydrophilicity of the polyester. The plasma treated polyester has certain timeliness.

Key words: plasma, polyester fabric, dielectric barrier discharge, hydrophilicity, friction coefficient

CLC Number: 

  • TS156

Fig.1

Influence of plasma treatment time on coefficient of dynamic friction of fibers"

Fig.2

Influence of plasma treatment time on fabric capillary effect"

Fig.3

Influence of plasma treatment time on fabric contact angle"

Tab.1

Influence of plasma treatment time on fabric break strength"

处理时间/s 断裂强力/N 强度降低率/%
0 783 0
15 613 21.7
30 595 24.0
60 586 25.1
120 493 37.0

Fig.4

Infrared spectra of plasma treated polyester fibers. (a) Without treatment; (b) Treated for 120 s"

Fig.5

SEM images of polyester treated by plasma. (a) Without treatment (×2 000); (b) Treated for 120 s(×3 000)"

Fig.6

Mechanism of polyester treated by plasma"

Fig.7

Relationship between placement time and contact angle after plasma treatment"

[1] 张爽, 吴晓青 . 涤纶改性方法研究进展[J]. 天津纺织科技, 2017(2):1-3.
ZHANG Shuang, WU Xiaoqing . Research progress of modification method of polyester[J]. Tianjin Textile Technology, 2017(2):1-3.
[2] 唐丽华, 任婉婷, 李鑫 , 等. 低温等离子体亲水改性聚丙烯熔喷非织造布[J]. 纺织学报, 2010,31(4):30-32.
TANG Lihua, REN Wanting, LI Xin , et al. Hydrothermal modified hydrophilic melt-blown nonwoven fabrics[J]. Journal of Textile Research, 2010,31(4):30-32.
[3] 唐晓亮, 任忠夫, 李驰 , 等. 常压等离子体表面改性涤纶织物[J]. 纺织学报, 2007,28(8):63-65,74.
TANG Xiaoliang, REN Zhongfu, LI Chi , et al. Surface modification of polyester fabrics by atmospheric pressure plasma[J]. Journal of Textile Research, 2007,28(8):63-65,74.
[4] 张庆, 王善元, 杨国荣 , 等. 低温等离子体处理涤纶织物的染色性能[J]. 印染, 2002,28(11):1-3.
ZHANG Qing, WANG Shanyuan, YANG Guorong , et al. Dyeing properties of low temperature plasma treated polyester fabrics[J]. China Dyeing & Finishing, 2002,28(11):1-3.
[5] 刘欣宇, 刘大伟 . 大气压非平衡等离子体射流活性粒子产生机制[J]. 高电压技术, 2016,42(2):452-461.
LIU Xinyu, LIU Dawei . Generation mechanism of non-equilibrium plasma jet active particles at atmospheric pressure[J]. High Voltage Technology, 2016,42(2):452-461.
[6] 王燕, 赵艳辉, 张芝涛 , 等. DBD等离子体及其应用技术的发展[J]. 自然杂志, 2002(5):277-282.
WANG Yan, ZHAO Yanhui, ZHANG Zhitao , et al. Development of DBD plasma and its application technology[J]. Natural Journal, 2002(5):277-282.
[7] WANG D, FENG K, ZHANG X , et al. The cold and atmospheric-pressure air surface barrier discharge plasma for large-are sterilization applications[J]. Applied Physics Letters, 2011,98(16):161-501.
[8] LIU W, CHEN X, LEI X , et al. Surface processing of
polyester canvas using atmospheric pressure air glow discharge plasma[J]. Plasma Chemistry and Plasma Processing, 2017,37(2):465-474.
[9] JUNKAR I, MODIC M, MOZETI M . Modification of PET surface properties using extremely non-equilibrium oxygen plasma[J]. Open Chemistry, 2015,13(1):490-496.
[10] 李宏英, 傅佳佳 . 利用等离子体预处理增强涤纶织物电子束辐照亲水改性的效果[J]. 材料导报, 2018(4):626-630,649.
LI Hongying, FU Jiajia . Enhancing the effect of electron beam irradiation and hydrophilic modification of polyester fabrics by plasma pretreatment[J]. Materials Review, 2018 ( 4):626-630,649.
[11] 王春莹, 王潮霞 . 真空氧等离子体表面改性涤纶织物研究[J]. 合成纤维工业, 2010,33(5):28-30.
WANG Chunying, WANG Chaoxia . Study on surface modification of polyester fabric by vacuum oxygen plasma[J]. China Synthetic Fiber Industry, 2010,33(5):28-30.
[12] 张春明, 房宽峻 . 等离子体处理的时效性对涤纶表面润湿性的影响[J]. 济南纺织服装, 2014(3):1-4.
ZHANG Chunming, FANG Kuanjun . Effect of plasma treatment on surface wettability of polyester fibers[J]. Jinan Textile Clothing, 2014(3):1-4.
[13] 李国涵, 张贤国, 洪约利 , 等. 等离子体技术在合成纤维改性中的应用进展[J]. 南通大学学报(自然科学版), 2017(1):45-52.
LI Guohan, ZHANG Xianguo, HONG Yueli , et al. Advances in the application of plasma technology in the modification of synthetic fibers[J]. Journal of Nantong University (Natural Science Edition), 2017(1):45-52.
[14] 戴杰, 郭晓玲, 申国栋 , 等. 碱减量和等离子体处理对涤纶织物的影响[J]. 针织工业, 2015(5):52-55.
DAI Jie, GUO Xiaoling, SHEN Guodong , et al. Effects of alkali deweighting and plasma finishing on polyester fabric[J]. Knitting Industries, 2015(5):52-55.
[15] 陆伟, 崔运花, 刁颖 , 等. 常压等离子体技术改善涤纶及涤棉纱的吸湿性能[J]. 东华大学学报(自然科学版), 2011,37(2):138-141,161.
LU Wei, CUI Yunhua, DIAO Ying , et al. Moisture-absorption improvement of polyester and T/C yarns by atmospheric pressure plasma technology[J]. Journal of Donghua University (Natural Science Edition), 2011,37(2):138-141,161.
[16] 王振欣, 梁小平, 王月然 , 等. 低温等离子体改性效果时效性的研究进展[J]. 纺织学报, 2011,32(2):149-154.
WANG Zhenxin, LIANG Xiaoping, WANG Yueran , et al. Research progress on the time effect of low temperature plasma modification[J]. Journal of Textile Research, 2011,32(2):149-154.
[1] LI Liang, LIU Jingfang, HU Zedong, GENG Changjun, LIU Rangtong. Graphene oxide loading on polyester fabrics and antistatic properties [J]. Journal of Textile Research, 2020, 41(09): 102-107.
[2] CHEN Qian, LIAO Zhen, XU Ming, ZHU Yawei. Effect of plasma treatment on adhesion performance of polytetrafluoroethylene film [J]. Journal of Textile Research, 2020, 41(08): 15-21.
[3] LIU Guojin, HAN Pengshuai, CHAI Liqin, WU Yu, LI Hui, GAO Yafang, ZHOU Lan. Preparation and stability of self-crosslinking P(St-NMA) photonic crystals with structural colors on polyester fabrics [J]. Journal of Textile Research, 2020, 41(05): 99-104.
[4] WANG Xiaofei, WAN Ailan. Preparation of polypyrrole / silver conductive polyester fabric by ultraviolet exposure [J]. Journal of Textile Research, 2020, 41(04): 112-116.
[5] LIN Jiameng, WAN Ailan, MIAO Xuhong. Preparation and properties of polypyrrole / silver conductive polyester fabrics [J]. Journal of Textile Research, 2020, 41(03): 113-117.
[6] DING Fang, REN Xuehong. Flame-retardant finishing of polyester fabrics by grafting phosphorus-nitrogen compounds [J]. Journal of Textile Research, 2020, 41(03): 100-105.
[7] ZHUANG Qun, ZHANG Fei, DU Zhaofang, JIANG Hua. Preparation of modified aramid fiber and epoxy resin composites and stab resistance thereof [J]. Journal of Textile Research, 2019, 40(12): 98-103.
[8] CHEN Ying, ZHOU Shuang, WEI Tianjing, FANG Haoxia, LI Yufei. Preparation and properties of polypyrrole composite fabric by soft template process [J]. Journal of Textile Research, 2019, 40(12): 93-97.
[9] XU Lin, REN Yu, ZHANG Hongyang, WU Shuangquan, LI Ya, DING Zhirong, JIANG Wenwen, XU Sijun, ZANG Chuanfeng. Construction and properties of superhydrophobic layer of titania / fluorosilane on polyester fabric surface [J]. Journal of Textile Research, 2019, 40(12): 86-92.
[10] DAI Yue, ZHANG Ruiping, WANG Qiuping, HU Ya′nan, ZHANG Xianguo. Deodorizing effect of polyester fabric treated by citric acid / β-cyclodextrin [J]. Journal of Textile Research, 2019, 40(12): 104-108.
[11] ZHU Jinming, QIAN Jianhua, SUN Liying, LI Zhengping, PENG Huimin. Properties of functionalized composite polyester fabric prepared from silver nanowires of high aspect ratio [J]. Journal of Textile Research, 2019, 40(11): 113-118.
[12] WANG Fanghe, WANG Rui, WEI Lifei, WANG Zhaoying, ZHANG Anying, WANG Deyi. Preparation and properties of layer-by-layer self-assembled flame retardant modified polyester fabrics [J]. Journal of Textile Research, 2019, 40(11): 106-112.
[13] LIN Jiameng, MIAO Xuhong, WAN Ailan. Influence of plasma pretreatment on structure and properties of polypyrrole/polyester warp knitted conductive fabric [J]. Journal of Textile Research, 2019, 40(09): 97-101.
[14] GAO Jing, WANG Lu. Influence of pretreatment process on superhydrophobic modification of wool/polyester fabric [J]. Journal of Textile Research, 2019, 40(09): 91-96.
[15] DU Xiaodong, LIN Fangbing, JIANG Jinhua, CHEN Nanliang, LIU Yanping. Influence of oxygen plasma modification on surface properties of polyimide fiber [J]. Journal of Textile Research, 2019, 40(09): 22-27.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!