Journal of Textile Research ›› 2019, Vol. 40 ›› Issue (04): 15-20.doi: 10.13475/j.fzxb.20180506706

• Fiber Materials • Previous Articles     Next Articles

Influence of N,N-dimethylacetamide/CaCl2 system on structure and properties of thermotropic liquid crystal polyarylate fibers

LIU Bingqian1, SHENG Dan2, PAN Heng1, CAO Genyang1()   

  1. 1. State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan,Hubei 430200, China
    2. School of Textiles and Clothing, Jiangnan University, Wuxi, Jiangsu 214122, China
  • Received:2018-05-28 Revised:2019-01-03 Online:2019-04-15 Published:2019-04-16
  • Contact: CAO Genyang E-mail:genyang.cao@wtu.edu.cn

Abstract:

In order to improve the interfacial bonding property between thermotropic liquid crystal polyarylate (TLCP) fibers and matrix material while maintaining the excellent thermal and mechanical properties of TLCP fibers, TLCP/polyurethane composites were prepared by surface modification of TLCP fibers with N,N-dimethylacetamide/calcium chloride (DMAc/CaCl2) system. The TLCP fibers before and after modification were characterized and analyzed by means of single fiber universal tester, scanning electron microscope, atomic force microscope, Fourier transform infrared spectrometer, X-ray diffraction, synchronized thermal analyzer and universal material testing machine. The results show that, after being modified with DMAc/CaCl2, TLCP fibers have increased surface fringes, and the average roughness increases from 96.42 to 438.60 nm. The interfacial bonding property of the modified TLCP fabric/polyurethane composites is improved significantly, and the average peeling strength increases from 0.71 N/mm to 1.14 N/mm. The modified TLCP fibers have no obvious change in the molecular structure and the crystal structure, and the crystallinity reduces from 69.00% to 64.45%. When the DMAc volume fraction does not exceed 30%, the mechanical properties of the fibers are not significantly damaged.

Key words: thermotropic liquid crystal polyarylate fiber, N, N-dimethylacetamide/calcium chloride system, surface modification, interface property, mechanical property

CLC Number: 

  • TQ342.724

Tab.1

Effect of volume fraction of DMAc on mechanical properties of TLCP fibers"

DMAc体积
分数/%
断裂强度 断裂伸长率 断裂功
平均值/(cN·dtex-1) CV值/% 平均值/% CV值/% 平均值/(cN·cm) CV值/%
0 27.81 6.69 3.00 8.61 29.72 14.11
10 27.37 8.76 2.70 5.23 27.11 14.10
30 26.81 7.19 2.68 7.60 27.33 17.82
50 25.40 7.24 2.49 7.60 24.21 17.57
70 24.48 10.69 2.36 8.34 22.28 20.36
90 24.40 7.68 2.36 8.06 22.11 16.40

Fig.1

SEM and AFM surface images of TLCP fibers before and after DMAc/CaCl2 system modification. (a) SEM image of unmodified TLCP (×8 000); (b) SEM image of modified TLCP (×8 000); (c) AFM image of unmodified TLCP; (d) AFM image of modified TLCP"

Fig.2

Infrared spectra of TLCP fibers before and after DMAc/CaCl2 system modification"

Fig.3

XRD curves of TLCP fibers before and after DMAc/CaCl2 system modification"

Fig.4

tanδ curves of TLCP fibers before and after DMAc/CaCl2 system modification"

Fig.5

TG curves of TLCP fibers before and after DMAc/CaCl2 system modification"

Fig.6

Peeling strength of TLCP fabric/PU composite"

[1] 赖光周平. 聚芳酯纤维的特性和应用[J]. 合成纤维, 2012,41(1):51-53.
LAI Guangzhouping. The characteristics and application of polyarylate fiber[J]. Synthetic Fiber in China, 2012,41(1):51-53.
[2] 王睦铿. 热致液晶纤维新进展[J]. 材料导报, 1994(3):58-63.
WANG Mukeng. New advance in thermotropic liquid crystal fibers[J]. Materials Review, 1994(3):58-63.
[3] LIU Yuyuan, ZHANG Chunhua, LIU Yuting, et al. Accelerated ultraviolet aging study of the Vectran fiber[J]. Journal of Applied Polymer Science, 2012,124(4):3286-3292.
[4] 郑宁来. 高性能液晶聚芳酯纤维的应用[J]. 合成纤维, 2014(1):54.
ZHENG Ninglai. Application of high performance liquid crystal polyester fiber[J]. Synthetic Fiber in China>, 2014(1):54.
[5] ZHANG Y C, HUANG J N, WU H Y, et al. Nano effects of helium-plasma treatment nano-SiO2 coating Vectran[J]. Materials Science Forum, 2009,610:700-705.
[6] 施伟利, 汪志, 王娟, 等. 热致性液晶聚芳酯纤维表面的化学修饰[J]. 合成纤维, 2013,42(11):24-28.
SHI Weili, WANG Zhi, WANG Juan, et al. Surface modification of thermotropic liquid-crystal polyarylate fiber withchemical approach[J]. Synthetic Fiber in China, 2013,42(11):24-28.
[7] 赵廷深. 环氧氯丙烷[J]. 化工之友, 1995(3):13.
ZHAO Tingshen. Epichlorohydrin[J]. Friend of Chemical Industry>, 1995(3):13.
[8] 孙华伟, 肖中鹏, 宋彩飞, 等. 热致液晶聚合物(TLCP)的溶解性研究[J]. 塑料工业, 2017,45(11):89-93.
SUN Huawei, XIAO Zhongpeng, SONG Caifei, et al. Investigation of solubility of thermotropic liquid crystalline polymer (TLCP)[J]. China Plastics Industry, 2017,45(11):89-93.
[9] 余义开, 黄海, 张跃军, 等. 新型含氰侧基可溶性聚芳酯的合成与表征[J]. 化工新型材料, 2008,36(10):70-71.
YU Yikai, HUANG Hai, ZHANG Yuejun, et al. Synjournal and characterization of novel soluble aromatic polyesters with pendant cyano groups[J]. New Chemical Materials, 2008,36(10):70-71.
[10] 高玉荣, 王锦艳, 阎庆玲, 等. 含二氮杂萘酮结构聚芳酯的合成及其在绝缘漆中的应用[J]. 功能材料, 2006,37(3):418-419.
GAO Yurong, WANG Jinyan, YAN Qingling, et al. Synjournal of polyarylate containing phthalazinone moiety and its application in insulating varnish[J]. Journal of Functional Materials, 2006,37(3):418-419.
[11] 王旭亮, 郑睿, 赵静红, 等. 中空纤维膜表面Zeta电位检测技术[J]. 净水技术, 2016,35(6):75-77.
WANG Xuliang, ZHENG Rui, ZHAO Jinghong, et al. Detection technology of surface Zeta potential for hollow fiber membrane[J]. Water Purification Technology, 2016,35(6):75-77.
[12] 覃俊, 王桦, 陈丽萍, 等. 热处理对Vectran纤维的结构与性能的影响[J]. 合成纤维工业, 2017,40(1):29-32.
QIN Jun, WANG Hua, CHEN Liping, et al. Effect of heat treatment on structure and properties of Vectran fiber[J]. China Synthetic Fiber Industry, 2017,40(1):29-32.
[13] 张晓林, 马晓光. 丙烯酸微波低温等离子体引发PET接枝改性的研究[J]. 纺织学报, 2005,26(5):16-19.
ZHANG Xiaolin, MA Xiaoguang. Grafting modification of PET with acrylic acid by microwave low temperature plasma techniques[J]. Journal of Textile Research, 2005,26(5):16-19.
[14] 贺永林, 李永贵, 葛明桥. 有机溶剂对回收涤纶碱减量废渣中苯二甲酸的影响[J]. 纺织学报, 2013,34(12):12-15.
HE Yonglin, LI Yonggui, GE Mingqiao. Effect of organic solvent on recovery of terephthalic acid from alkali deweighting wastewater of polyester[J]. Journal of Textile Research, 2013,34(12):12-15.
[15] LIU Y X, LIU Y Y, TAN H F, et al. Structural evolution and degradation mechanism of Vectran fibers upon exposure to UV-radiation[J]. Polymer Degradation and Stability, 2013,98(9):1744-1753.
[16] 李维贤. 香云纱工艺中晒莨工序的染色机制[J]. 纺织学报, 2016,37(2):103-111.
LI Weixian. Dyeing mechanism of sunning process in production of gambiered Guangdong silk[J]. Journal of Textile Research, 2016,37(2):103-111.
[17] HABENSCHUSS A, VARMA-NAIR M, YOONG K K, et al. The phase diagram of poly(4-hydroxybenzoic acid) and poly (2,6-hydroxynaphthoic acid) and their copolymers from X-ray diffraction and thermal analysis[J]. Polymer, 2006,47(7):2369-2380.
[18] DUFOUR P R, RAEMAEKERS K G H, BART J C J. Simultaneous thermogravimetric and mass-spectrometric analysis of high-temperature polyesters[J]. Thermochimica Acta, 1991,175(2):263-279.
[1] WANG Qiuping, ZHANG Ruiping, LI Chenghong, ZHANG Gecheng. Preparation and characterization of conductive polyester nonwovens [J]. Journal of Textile Research, 2020, 41(10): 116-121.
[2] WANG Yang, CHENG Chunzu, JIANG Li′na, REN Yuanlin, GUO Yingbin. Preparation of durable flame retardant polyacrylonitrile fabrics using UV-induced photo-grafting polymerization combined with sol-gel coating [J]. Journal of Textile Research, 2020, 41(10): 107-115.
[3] WANG Bo, FAN Lihua, YUAN Yun, YIN Yunjie, WANG Chaoxia. Preparation and electric storage performance of stretchable polypyrrole / cotton knitted fabric [J]. Journal of Textile Research, 2020, 41(10): 101-106.
[4] LI Wei, ZHANG Zhengqiao, WU Lanjuan, XU Zhenzhen, NI Qingqing, LU Yuhao. Preparation of phosphorylated-caproylated starch and its membrane properties [J]. Journal of Textile Research, 2020, 41(10): 81-86.
[5] LI Qing, GUAN Binbin, WANG Ya, LIU Tianhui, ZHANG Luohong, FAN Zenglu. Photosensitizers sensitized Cu-organic framework for highly efficient photocatalytic degradation of Reactive Dark Blue K-R [J]. Journal of Textile Research, 2020, 41(10): 87-93.
[6] LU Linna, LI Yonggui, LU Qilin. One-pot synthesis and characterization of aminated cellulose nanocrystals [J]. Journal of Textile Research, 2020, 41(10): 14-19.
[7] SHEN Yue, JIANG Gaoming, LIU Qixia. Analysis on acoustic absorption performance of activated carbon fiber felts with gradient structure [J]. Journal of Textile Research, 2020, 41(10): 29-33.
[8] CHEN Yong, WANG Jingjing, WANG Chaosheng, GU Donghua, WU Jing, WANG Huaping. Effect of oligomers on crystalline properties of polytrimethylene terephthalate [J]. Journal of Textile Research, 2020, 41(10): 1-6.
[9] YING Lili, LI Changlong, WANG Zongqian, WANG Dengfeng, WU Kaiming, XIE Wei, CHENG Huan. Modification of down by zirconium ion with phytic acid and its thermal insulation performance [J]. Journal of Textile Research, 2020, 41(10): 94-100.
[10] GUAN Fucheng, GUO Jing, LÜ Lihua, TAN Qian, SONG Jingxing, ZHANG Xin. Hydrogen bonding mechanism and properties of polyvinyl alcohol / krill protein fibers [J]. Journal of Textile Research, 2020, 41(10): 7-13.
[11] DUAN Fangyan, WANG Wenyu, JIN Xin, NIU Jiarong, LIN Tong, ZHU Zhengtao. Research progress in formation of starch fibers and their drug-loaded controlled-release [J]. Journal of Textile Research, 2020, 41(10): 170-177.
[12] YU Zhicai, ZHONG Yueqi, GONG R Hugh, XIE Haoyang, HUSSAIN Azmat. Fabric matching based on three-dimensional drape model and fabric weight [J]. Journal of Textile Research, 2020, 41(10): 46-51.
[13] XU Shoudong, LENG Yijin, WU Guoxin. Research on color grading of seed cotton based on neural network [J]. Journal of Textile Research, 2020, 41(10): 34-40.
[14] LIU Jinxu, LIU Pengqing. Advances in flame-retardant surface treatments for textiles [J]. Journal of Textile Research, 2020, 41(10): 178-187.
[15] FENG Duanpei, SHANG Yuanyuan, LI Jun. Multi-scale simulation of impact failure behavior for 4- and 5-directional 3-D braided composites [J]. Journal of Textile Research, 2020, 41(10): 67-73.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!