Journal of Textile Research ›› 2019, Vol. 40 ›› Issue (8): 55-63.doi: 10.13475/j.fzxb.20180506809

• Textile Engineering • Previous Articles     Next Articles

Micro-deformation measurement and acoustic emission monitoring of three-dimensional braided composites under tensile loading

ZHANG Yannan, ZHOU Wei(), SHANG Yajing, ZHAO Wenzheng   

  1. College of Quality and Technical Supervision, Hebei University, Baoding, Hebei 071002, China
  • Received:2018-05-28 Revised:2019-05-12 Online:2019-08-15 Published:2019-08-16
  • Contact: ZHOU Wei E-mail:zhouweihy@126.com

Abstract:

In order to monitor the deformation and damage behavior of three-dimensional four-directional braided composites under tensile loading, the acoustic emission (AE) and digital image correlation method complementary techniques were adopted, and the surface local micro-deformation information and the dynamic characteristics of internal damage sources of the composites were effectively acquired. The results show that the obvious tensile strain concentration can be observed at the interweaving area of the yarns while the tensile strain value of the composite increases up to about 0.45%. The propagation of the strain concentrations along the transverse and longitudinal braiding yarns are induced as the strain level increases gradually. At the same time, more AE signals are generated,and the stiffnesses of the composite specimens are decreased. As the strain level increases up to about 1.13%, the yarns carry the main loads, and the strain band in shape of zigzag are obtained in the surface of the composite specimens. Based on the K-means cluster analysis, AE amplitudes of the main damage modes such as matrix cracking, fiber/matrix debonding and fiber breakage are 40-60, 55-100 and 40-90 dB, respectively. With the increase of the weaving thickness, the proportion of the surface region in the skin-core structures of the composite specimen decreases, resulting in the decrease of tensile strength. The peak amplitude and frequency of AE signals have no significant change.

Key words: three-dimensional braided composite, acoustic emission monitoring, digital image correlation, damage evolution, tensile deformation

CLC Number: 

  • TB332

Fig.1

Tensile stress-strain curve of composite specimens"

Fig.2

Skin-core structure (a) and cross-section features (b) of composite specimens"

Fig.3

Changes of tensile stress, AE energy and accumulative hits of composite specimens with strain. (a) Stress, AE energy changes with strain of specimen A; (b) Stress, AE accumulative hits changes with strain of specimen A; (c) Stress,AE energy changes with strain of specimen B; (d) Stress, AE accumulative hits changes with strain of specimen B"

Fig.4

Surfacial strain fields of composites at different average strain levels. (a) Specimen A; (b) Specimen B"

Fig.5

Local morphology and critical failure status of composite material for surface displacement field. (a) Specimen A; (b) Specimen B"

Fig.6

DDB index varying with number of clusters"

Fig.7

Distributions of AE amplitude and frequency of clustering. (a) Specimen A; (b) Specimen B"

Fig.8

Distribution of AE amplitude of clustering. (a) Specimen A; (b) Specimen B"

"

[1] ZHOU H, ZHANG W, LIU T , et al. Finite element analyses on transverse impact behaviors of 3-D circular braided composite tubes with different braiding angles[J]. Composites Part A(Applied Science and Manufacturing), 2015,79:52-62.
[2] DONG K, ZHANG J, JIN L , et al. Multi-scale finite element analyses on the thermal conductive behaviors of 3D braided composites[J]. Composite Structures, 2016,143:9-22.
doi: 10.1016/j.compstruct.2016.02.029
[3] 李典森, 卢子兴, 李嘉禄 , 等. 三维编织T300环氧复合材料的弯曲性能及破坏机理[J]. 航空材料学报, 2009,29(5):82-87.
LI Diansen, LU Zixing, LI Jialu , et al. Bending properties and failure mechanism of three dimensional T300/epoxy braided composites[J]. Journal of Aeronautical Materials, 2009,29(5):82-87.
[4] 张芳芳, 姜文光, 刘才 , 等. 基于区域叠合技术的三维编织复合材料渐进损伤过程数值模拟[J]. 复合材料学报, 2013,30(6):227-236.
ZHANG Fangfang, JIANG Wenguang, LIU Cai , et al. Simulation of progressive damage of 3D braided composites using domain superposition technique[J]. Acta Materiae Compositae Sinica, 2013,30(6):227-236.
[5] LABANIEH A R, LEGRAND X, KONCAR V , et al. Evaluation of the elastic behavior of multiaxis 3D-woven preforms by numerical approach[J]. Journal of Composite Materials, 2014,48(26):3243-3252.
doi: 10.1177/0021998313508800
[6] 孟松鹤, 田晓晓, 杜善义 , 等. 三维编织碳/环氧复合材料力学性能测试及破坏机制[J]. 复合材料学报, 2012,29(2):115-120.
MENG Songhe, TIAN Xiaoxiao, DU Shanyi , et al. Mechanical properties testing and failure mechanism analysis of 3D woven carbon/epoxy composites[J]. Acta Materiae Compositae Sinica, 2012,29(2):115-120.
[7] 严实, 赵金阳, 陆夏美 , 等. 基于声发射技术的三维编织复合材料低速冲击损伤分析[J]. 材料工程, 2014 ( 7):92-97.
YAN Shi, ZHAO Jinyang, LU Xiamei , et al. Low velocity impact response of 3D braided composites by acoustic emission[J]. Journal of Materials Engineering, 2014 ( 7):92-97.
[8] SU H . Acoustic emission source positioning research of 3D braided composite material based on the wavelet network[J]. Functional Materials, 2016,233(2):331-336.
[9] ZHENG Y, SUN Y, LI J , et al. Tensile response of carbon-aramid hybrid 3D braided composites[J]. Materials and Design, 2016,116:246-252.
doi: 10.1016/j.matdes.2016.11.082
[10] 孙颖, 刘俊岭, 郑园园 , 等. 碳/芳纶混编三维编织复合材料拉伸性能[J]. 纺织学报, 2018,39(2):49-54.
SUN Ying, LIU Junling, ZHENG Yuanyuan , et al. Tensile properties of carbon-aramid hybrid 3-D braided composites[J]. Journal of Textile Research, 2018,39(2):49-54.
doi: 10.1177/004051756903900109
[11] MELENKA G W, CAREY J P . Experimental analysis of diamond and regular tubular braided composites using three-dimensional digital image correlation[J]. Journal of Composite Materials, 2017,51(28). DOI: 10.1177/002199831769541.
[12] LOMOV S V, IVANO D S, TRUONG T C , et al. Experimental methodology of study of damage initiation and development in textile composites in uniaxial tensile test[J]. Composites Science and Technology, 2008,68(12):2340-2349.
doi: 10.1016/j.compscitech.2007.07.005
[13] KARAHAN M . The effect of fibre volume fraction on damage initiation and propagation of woven carbon-epoxy multi-layer composites[J]. Textile Research Journal, 2012,82(1):45-61.
doi: 10.1177/0040517511416282
[14] CASTANEDA N, WISNE B, CUADRA J , et al. Investigation of the z-binder role in progressive damage of 3D woven composites[J]. Composites Part A: Applied Science and Manufacturing, 2017,98:76-89.
doi: 10.1016/j.compositesa.2016.11.022
[15] LI S, LIU L, YAN J , et al. An approach for testing and predicting longitudinal tensile modulus of 3D braided composites[J]. Journal of Reinforced Plastics and Composites, 2014,33(8):775-784.
doi: 10.1177/0731684414522332
[16] ALAM S Y, LOUKILI A, GRONDIN F , et al. Use of the digital image correlation and acoustic emission technique to study the effect of structural size on cracking of reinforced concrete[J]. Engineering Fracture Mechanics, 2015,143:17-31.
doi: 10.1016/j.engfracmech.2015.06.038
[17] YAN S, GUO L Y, ZHAO J Y , et al. Effect of braiding angle on the impact and post-impact behavior of 3D braided composites[J]. Strength of Materials, 2017,49(1):198-205.
doi: 10.1007/s11223-017-9858-4
[18] 王宝来, 梁军, 刘洋 . 三维编织细编穿刺炭/炭复合材料拉伸与压缩性能及试件尺寸效应研究[J]. 固体火箭技术, 2008(2):184-187.
WANG Baolai, LIANG Jun, LIU Yang . Study on tensile and compressive properties and size effect of 3D fine woven punctured C/C composites[J]. Journal of Solid Rocket Technology, 2008(2):184-187.
[19] LI C, QIAO X, WANG T , et al. Damage evolution and failure mechanism of thermal barrier coatings under Vickers indentation by using acoustic emission technique[J]. Progress in Natural Science Materials International, 2017,28(1):90-96.
doi: 10.1016/j.pnsc.2017.12.002
[20] CARVELLI V, D″ETTORRE A, LOMOV S V . Acoustic emission and damage mode correlation in textile reinforced PPS composites[J]. Composite Structures, 2017,163:399-409.
doi: 10.1016/j.compstruct.2016.12.012
[21] GUTKIN R, GREEN C J, VANGRATTANSCHAI S , et al. On acoustic emission for failure investigation in CFRP: pattern recognition and peak frequency analyses[J]. Composite Structures, 2014,116(1):286-299.
doi: 10.1016/j.compstruct.2014.05.023
[22] WOO S C, KIM T W . High strain-rate failure in carbon/Kevlar hybrid woven composites via a novel SHPB-AE coupled test[J]. Composites Part B: Engineering, 2016,97:317-328.
doi: 10.1016/j.compositesb.2016.04.084
[23] 刘希灵, 潘梦成, 李夕兵 , 等. 动静加载条件下花岗岩声发射b值特征的研究[J]. 岩石力学与工程学报, 2017,36:3148-3155.
LIU Xiling, PAN Mengcheng, LI Xibing , et al. Acoustic emission b-value characteristics of granite under dynamic loading and static loading[J]. Chinese Journal of Rock Mechanics and Engineering, 2017,36:3148-3155.
[24] PRASAD B K R, SAGAR R V, KUMAR S S . Comparison of acoustic emission b-values with strains in reinforced concrete beams for damage evaluation[J]. Bridge Engineering, 2012,164(4):233-244.
[1] LIU Jun, LIU Kui, NING Bo, SUN Baozhong, ZHANG Wei. Bending properties of three-dimensional braided composite T-beam at low temperature [J]. Journal of Textile Research, 2019, 40(12): 57-62.
[2] . Tensile strain sensing characteristics of carbon nanoyarns [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(03): 14-18.
[3] . Structural damage evaluation of three-dimensional braided composite based on damage index [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(05): 69-74.
[4] . Bending load characteristic of carbon nano wires embedded into three-dimensional braided composite [J]. JOURNAL OF TEXTILE RESEARCH, 2016, 37(01): 57-63.
[5] . Flux image-based internal defectdetection for flat test pieces of three-dimensional braided composites [J]. JOURNAL OF TEXTILE RESEARCH, 2015, 36(08): 49-55.
[6] WAN Zhen-kai;LI Jing-dong. Feature of acoustic emission and failure analysis for three-dimensional braided composite material under compressive load [J]. JOURNAL OF TEXTILE RESEARCH, 2006, 27(2): 20-24.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. JOURNAL OF TEXTILE RESEARCH, 2000, 21(05): 31 -33 .
[2] . [J]. JOURNAL OF TEXTILE RESEARCH, 1987, 8(11): 40 -41 .
[3] GONG Lifang;NI Renjie;HUANG Yu;YAO Cheng. Research on the antistatic performance of bisquaternary ammonium salt for polyester fabric[J]. JOURNAL OF TEXTILE RESEARCH, 2008, 29(5): 72 -74 .
[4] LIU Hao;CHENG Ling. Quality evaluation of knitting yarns using modified FKCM[J]. JOURNAL OF TEXTILE RESEARCH, 2009, 30(01): 37 -41 .
[5] . [J]. JOURNAL OF TEXTILE RESEARCH, 1993, 14(04): 26 -30 .
[6] . [J]. JOURNAL OF TEXTILE RESEARCH, 1983, 4(11): 52 .
[7] . [J]. JOURNAL OF TEXTILE RESEARCH, 1983, 4(12): 26 -30 .
[8] . [J]. JOURNAL OF TEXTILE RESEARCH, 1983, 4(12): 51 .
[9] Jie YU. Structure and properties of polyacrylonitrile / Ca-montmorillonite nanocomposite fiber[J]. JOURNAL OF TEXTILE RESEARCH, 2011, 32(5): 29 -32 .
[10] . [J]. JOURNAL OF TEXTILE RESEARCH, 1982, 3(01): 58 .