Journal of Textile Research ›› 2019, Vol. 40 ›› Issue (8): 95-100.doi: 10.13475/j.fzxb.20180601006

• Dyeing and Finishing & Chemicals • Previous Articles     Next Articles

Influence of plasma treatment on electrical conductivity of polypyrrole/polyester composite yarn

JIANG Shan1, WAN Ailan1,2,3(), MIAO Xuhong1,3, JIANG Gaoming1,3, MA Pibo1,3, CHEN Qing1,3   

  1. 1. Engineering Research Center for Knitting Technology, Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, China
    2. Key Laboratory of Textile Fiber Products, Ministry of Education, Wuhan Textile University, Wuhan, Hubei 430200
    3. Key Laboratory of Eco-Textiles(Jiangnan University), Ministry of Education, Wuxi, Jiangsu 214122
  • Received:2018-06-01 Revised:2019-03-11 Online:2019-08-15 Published:2019-08-16
  • Contact: WAN Ailan E-mail:wan@jiangnan.edu.cn

Abstract:

In order to improve the surface adhesion fastness of the conductive polymer polypyrrole (PPy) on the polyester (PET) filament, the sub-vacuum plasma treatment technology was used for surface modification of polyester fiber, and the composite conductive PPy/PET yarns were prepared by in-situ polymerization method. The influence of plasma treatment on the electrical conductivity and durability of PPy/PET composite conductive yarns was investigated. The results show that the tiny concave pits appear on the surface of polyester fiber by the high-energy reactive particle bombardment of sub-vacuum plasma processing, which can effectively improve the surface roughness of the polyester fiber without significant influence on the mechanical properties of the substrate. The continuity and evenness of the PPy thin films was achieved by the sub-vacuum plasma treatment. The adhesion between PPy thin film and polyester yarns, the electrical conductivity and durability of composite conductive yarns were improved by the sub-vacuum plasma treatment. The electrical conductivity of composite conductive PPy/PET yarns before and after sub-vacuum plasma treatment is 0.67 and 1.16 S/cm, respectively.

Key words: sub-vacuum plasma, in-situ polymerization, composite conductive polypyrrole/polyester yarn, electrical conductivity, adhesion fastness

CLC Number: 

  • TQ342

Tab.1

Sample processing condition parameters"

试样
编号
处理条件 试样
编号
处理条件
1# 未处理 9# 原位聚合
2# 220 W、4 min 10# 220 W、4 min+原位聚合
3# 300 W、4 min 11# 300 W、4 min+原位聚合
4# 380 W、4 min 12# 380 W、4 min+原位聚合
5# 460 W、4 min 13# 460 W、4 min+原位聚合
6# 300 W、6 min 14# 300 W、6 min+原位聚合
7# 300 W、8 min 15# 300 W、8 min+原位聚合
8# 300 W、10 min 16# 300 W、10 min+原位聚合

Fig.1

Effect of plasma treatment time on electrical conductivity and weight gain of composite conductive yarns"

Fig.2

Effect of plasma treatment power on electrical conductivity and weight gain of composite conductive yarns"

Fig.3

SEM images of polyester yarn and composite conductive yarn before and after plasma treatment(×5 000)"

Tab.2

Mechanical properties of polyester yarn under different treatment conditions"

试样
编号
断裂
强力/
cN
断裂
强度/
(cN·tex-1)
断裂
伸长
率/%
试样
编号
断裂
强力/
cN
断裂
强度/
(cN·tex-1)
断裂
伸长
率/%
1# 322.15 38.81 24.62 9# 327.43 39.45 23.21
2# 320.02 38.56 22.65 10# 344.04 41.45 20.48
3# 319.10 38.45 23.54 11# 343.20 41.35 20.81
4# 314.43 37.88 23.25 12# 331.48 39.93 21.16
5# 308.84 37.21 23.18 13# 324.94 39.15 20.09
6# 317.47 38.25 22.37 14# 324.12 39.05 21.29
7# 316.15 38.09 22.74 15# 330.61 39.83 22.95
8# 307.91 37.10 23.48 16# 326.40 39.33 21.56

Fig.4

Effect of plasma treatment power on durability of composite conductive yarn"

Fig.5

Effect of plasma treatment time on durability of composite conductive yarn"

[1] 张晓峰, 李国豪, 胡吉永 , 等. 用于人体上肢运动姿态监测的聚吡咯导电织物的机电性能评价[J]. 中国生物医学工程学报, 2015,34(6):670-676.
ZHANG Xiaofeng, LI Guohao, HU Jiyong , et al. Mechanic-electrical property characterization of PPy-coated conductive woven fabric for human upper limb motion monitoring[J]. Chinese Journal of Biomedical Engineering, 2015,34(6):670-676.
[2] LI Y, CHENG X Y, LEUNG M Y , et al. A flexible strain sensor from polypyrrole-coated fabrics[J]. Synthetic Metals, 2005,155:89-94.
doi: 10.1016/j.synthmet.2005.06.008
[3] CAMPBELL T E, MUNRO B J, WALLACE G G , et al. Can fabric sensors monitor breast motion?[J]. Journal of Biomechanics, 2007,40:3056-3059.
doi: 10.1016/j.jbiomech.2007.01.020 pmid: 17383660
[4] 王婉秦, 于德梅, 解云川 . 聚吡咯及其共聚物的研究进展[J]. 高分子材料科学与工程, 2011,27(7):175-178.
WANG Wanqin, YU Demei, XIE Yunchuan . The development in polypyrrole and its copolymer[J]. Polymer Materials Science & Engineering, 2011,27(7):175-178.
[5] 霍歆彤, 刘玉, 李青 . 聚吡咯/涤纶复合导电织物制备工艺探索[J]. 北京服装学院学报(自然科学版), 2015,35(2):12-15.
HUO Xintong, LIU Yu, LI Qing . Preparation of polypyrrole/polyester conductive composite fabric[J]. Journal of Beijing Institute of Fashion Techno-logy(Natural Science Edition), 2015,35(2):12-15.
[6] 鞠佳彤, 田琳, 陈莹 , 等. 聚吡咯涤纶导电织物的制备及其表征[J]. 纺织学报, 2013,34(11):28-33.
JU Jiatong, TIAN Lin, CHEN Ying , et al. Preparation and properties of conductive polypyrrole polyester fabric[J]. Journal of Textile Research, 2013,34(11):28-33.
[7] MEHMOOD T, DAI X J, KAYNAK A , et al. Improved bonding and conductivity of polypyrrole on polyester by gaseous plasma treatment[J]. Plasma Processes and Polymers, 2012,9(10):1006-1014.
doi: 10.1002/ppap.201200046
[8] MEHMOOD T, KAYNAK A, DAI X J , et al. Study of oxygen plasma pre-treatment of polyester fabric for improved polypyrrole adhesion[J]. Materials Chemistry and Physics, 2014,143(2):668-675.
doi: 10.1016/j.matchemphys.2013.09.052
[9] WANG J P, XUE P, TAO X M . Strain sensing behavior of electrically conductive fibers under large deforma-tion[J]. Materials Science and Engineering, 2011,528(6):2863-2869.
[10] SALGE J . Plasma-assisted deposition at atmospheric pressure[J]. Surface and Coatings Technology, 1996,80:1-7.
doi: 10.1016/0257-8972(95)02676-2
[11] 贾彩霞, 陈平, 王乾 , 等. 常压空气等离子体对连续纤维的在线改性[J]. 材料研究学报, 2015,29(1):10-16.
JIA Caixia, CHEN Ping, WANG Qian , et al. On-line modification of continuous fibers by atmospheric air plasma[J]. Chinese Journal of Materials Research, 2015,29(1):10-16.
[12] 王辉, 孙岩洲, 方志 , 等. 介质阻挡放电低温等离子体的产生[J]. 印染, 2005,31(19):5-7.
WANG Hui, SUN Yanzhou, FANG Zhi , et al. Generation of non-thermal plasma using dielectric barrier discharge[J]. China Dyeing & Finishing, 2005,31(19):5-7.
[13] 尤庆亮, 甘立新, 孟月东 , 等. 低温等离子体对聚合物表面改性的研究[J]. 化工新型材料, 2004,32(4):10-13.
YOU Qingliang, GAN Lixin, MENG Yuedong , et al. Study on polymer surface modification by low temperature plasma[J]. New Chemical Materials, 2004,32(4):10-13.
[14] RAMELOW U S, MA J H, DARBEAU R . Electrical conductivities of polypyrrole reacted with dopant solu-tion[J]. Material Research Innovation, 2001,5(1):40-49.
doi: 10.1007/s100190100129
[15] 张晓峰, 王浩, 胡圣寅 . 聚吡咯导电机织物的制备及电阻性能表征[J]. 上海纺织科技, 2018,46(4):40-42.
ZHANG Xiaofeng, WANG Hao, HU Shengyin . Preparation and resistance characterization of polypyrrole conductive motor fabric[J]. Shanghai Textile Science & Technology, 2018,46(4):40-42.
[1] HU Chengye, MIAO Runwu, HAN Xiao, HONG Jianhan, GIL Ignacio. Effect of polyvinyl alcohol on durability of polyaniline conductive layer on poly(p-phenylene terephthamide) yarn surface [J]. Journal of Textile Research, 2020, 41(04): 91-97.
[2] WU Yingxin, HU Chengye, ZHOU Xiaoya, HAN Xiao, HONG Jianhan, GIL Ignacio. Strain sensing property of flexible wearable spandex / polyaniline / polyurethane composites [J]. Journal of Textile Research, 2020, 41(04): 21-25.
[3] WANG Xiaofei, WAN Ailan. Preparation of polypyrrole / silver conductive polyester fabric by ultraviolet exposure [J]. Journal of Textile Research, 2020, 41(04): 112-116.
[4] ZHANG Jiao, GAO Xuefeng, WANG Yuzhou, LIU Haihui, ZHANG Xingxiang. Preparation and properties of polyamide 66/amino-functionalized multi-walled carbon nanotubes fibers [J]. Journal of Textile Research, 2019, 40(11): 1-8.
[5] ZHU Jinming, QIAN Jianhua, SUN Liying, LI Zhengping, PENG Huimin. Properties of functionalized composite polyester fabric prepared from silver nanowires of high aspect ratio [J]. Journal of Textile Research, 2019, 40(11): 113-118.
[6] HE Qingqing, XU Hong, MAO Zhiping, ZHANG Linping, ZHONG Yi, LÜ Jingchun. Preparation of high-electrical conductivity polypyrrole-coated fabrics [J]. Journal of Textile Research, 2019, 40(10): 113-119.
[7] CAO Jiliang, XU Licong, MENG Chunli, LI Xiaochun. Electric conductivity of cotton fabrics by graphene UV curable coating [J]. Journal of Textile Research, 2019, 40(02): 135-140.
[8] . Conductivity of polyaniline / chitosan / wool composite fabrics and molecular simulation for aniline adsorption [J]. Journal of Textile Research, 2018, 39(12): 95-100.
[9] . Continuous preparation and properties of conductive polyester/polyaniline composite yarns [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(02): 20-25.
[10] . Influence of different solvents on anticoagulant property of polyprrole/polyester marterials [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(02): 132-137.
[11] . Preparation and properties of thermotropic cholesterol liquid crystal microcapsules [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(06): 75-79.
[12] . Electrical and mechanical properties of conductive polytrimethylene terephthalate / polyaniline composite yarns [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(02): 40-46.
[13] . Strain sensing property of knitted fabric of conductive ultrahigh molecular weight polyethylene/polyaniline composite yarn [J]. Journal of Textile Research, 2016, 37(2): 73-78.
[14] . Functional fibers based on graphene [J]. JOURNAL OF TEXTILE RESEARCH, 2016, 37(10): 153-157.
[15] . Effect of oxygen plasma pre-treatment on electroconductive property of UHMWPE/PANI composite fibers [J]. JOURNAL OF TEXTILE RESEARCH, 2013, 34(6): 1-7.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. JOURNAL OF TEXTILE RESEARCH, 1984, 5(09): 30 -32 .
[2] . [J]. JOURNAL OF TEXTILE RESEARCH, 1998, 19(05): 31 -32 .
[3] WEI Jing. Rise tendency change of the turn collar[J]. JOURNAL OF TEXTILE RESEARCH, 2005, 26(5): 103 -105 .
[4] LI Wei-feng . Research and manufacture of geomembrane waterpower test instrument based on RS-485 bus[J]. JOURNAL OF TEXTILE RESEARCH, 2005, 26(1): 107 -109 .
[5] . [J]. JOURNAL OF TEXTILE RESEARCH, 1983, 4(11): 5 -11 .
[6] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(05): 129 -130 .
[7] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(06): 19 -21 .
[8] . [J]. JOURNAL OF TEXTILE RESEARCH, 1988, 9(10): 17 -19 .
[9] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 11 -13 .
[10] . [J]. JOURNAL OF TEXTILE RESEARCH, 2002, 23(06): 10 -11 .