Journal of Textile Research ›› 2019, Vol. 40 ›› Issue (06): 58-63.doi: 10.13475/j.fzxb.20180601306

• Dyeing and Finishing & Chemicals • Previous Articles     Next Articles

Effect of wool fabric protease modification on droplet spreading and color performance

AN Fangfang1, FANG Kuanjun1,2(), LIU Xiuming1, CAI Yuqing3, HAN Shuang1, YANG Haizhen1   

  1. 1. School of Textile Science and Engineering, Tianjin Polytechnic University, Tianjin 300387, China
    2. Collaborative Innovation Center for Eco-Textiles of Shandong Province, Qingdao, Shandong 266071, China
    3. School of Textiles and Clothing, Qingdao University, Qingdao, Shandong 266071, China
  • Received:2018-06-01 Revised:2019-01-21 Online:2019-06-15 Published:2019-06-25
  • Contact: FANG Kuanjun E-mail:13808980221@163.com

Abstract:

In order to investigate the influence of the surface performance of the modified wool fabrics on reactive dye ink droplets spreading and color properties, protease Savinase 16L was used for treating wool fabrics, and the spreading of ink droplets on fabrics and colorimetric values were observed. The contact angle measuring instrument, field emission scanning electron microscopy and X-ray photoelectron spectroscopy were adopted to analyze the wettability, morphology and chemical composition of wool fabrics. The results show that the surface scales of wool fibers are etched, the fiber structure becomes loose, and the wettability is improved after the protease modification. The spreading time and area of reactive dye droplets with different colors on the fabrics are significantly shorter and smaller than those of unmodified fabrics. Taking light red ink droplets as an example, the droplets spreading time and area on the protease treated fabrics decrease by 54.8% and 19.1%, respectively. In addition, more proteins are exposed to the wool fiber surface after the protease treatment, allowing more reactive dye molecules to covalently bond with the amino groups on the fiber surface, thereby improving the color depth and color saturation of wool fabric.

Key words: wool fabric, inkjet printing, protease modification, surface property, ink droplet spreading, color performance

CLC Number: 

  • TS194.4

Tab. 1

Effect of protease modification on ink droplets spreading time and area"

浸轧次数 酶处理时间/s 铺展时间/s 铺展面积/mm2
0 0 42.0 80.0
1 40 37.0 74.6
2 80 34.0 72.5
3 120 30.0 71.1
4 160 24.0 67.1
5 200 19.0 64.7

Tab. 2

Effect of protease modification on color performance of ink droplets"

浸轧
次数
酶处理
时间/s
L* a* b* C* h° K/S
0 0 45.9 42.0 -6.0 42.5 351.9 5.5
1 40 42.4 43.1 -5.5 43.4 354.2 7.7
2 80 41.5 44.4 -5.3 44.5 355.1 9.2
3 120 40.3 45.3 -5.1 45.5 354.7 10.0
4 160 39.0 46.0 -4.7 46.6 355.4 10.8
5 200 38.6 47.3 -3.9 47.5 355.8 11.5

Tab. 3

Spreading and color parameters of ink droplets"

墨水 织物 铺展时间/s 铺展面积/mm2 L* a* b* C* h° K/S
青色 未处理 35 69.5 62.0 -27.4 -15.6 31.5 209.6 4.4
处理后 16 50.0 50.8 -27.7 -22.2 35.5 218.7 12.5
品红 未处理 37 78.3 54.3 42.2 -6.9 42.8 350.8 4.8
处理后 14 57.2 34.8 49.1 -0.8 49.2 359.2 13.7
黄色 未处理 29 42.1 75.5 -4.7 47.1 47.4 95.7 3.8
处理后 14 37.5 68.7 0.4 64.1 54.1 89.6 9.4
黑色 未处理 35 42.4 41.1 5.2 0.4 5.3 251.7 5.6
处理后 15 33.9 23.0 2.0 -0.4 2.0 250.3 14.9

Tab. 4

Effect of protease modification on wetting properties of wool fabrics"

浸轧次数 酶处理时间/s 接触角/(°)
0 0 125.0
1 40 122.3
2 80 117.1
3 120 116.5
4 160 114.7
5 200 112.6

Fig.1

SEM images of wool fibers(× 2 000). (a) Untreated fibers; (b) Protease treated fibers"

Tab.5

Analysis of wool surface elements before and after protease treatment"

元素 结合能/eV 含量/%
改性前 改性后
C 285.0 65.9 64.1
O 531.8 20.4 20.2
N 398.4 5.2 8.6
S 164.0 2.3 1.4
Si 102.4 6.2 5.7
N与C元素比 - 7.9 13.4
O与C元素比 - 31.0 31.5
[1] 房宽峻. 数字喷墨印花技术[M]. 北京: 中国纺织出版社, 2008: 11-14.
FANG Kuanjun. Digital Inkjet Printing Technology[M]. Beijing: China Textile & Apparel Press, 2008: 11-14.
[2] LIU Z D, FANG K J, GAO H G, et al. Effect of cotton fabric pretreatment on drop spreading and colour performance of reactive dye inks[J]. Coloration Technology, 2016,132(5):407-413.
[3] 房宽峻, 刘尊东, 陈伟, 等. 棉织物表面处理对活性染料喷墨印花的影响[J]. 纺织学报, 2015,36(2):128-132.
FANG Kuanjun, LIU Zundong, CHEN Wei, et al. Effect of fabric surface treatment on ink jet printing with reactive dyes[J]. Journal of Textile Research, 2015,36(2):128-132.
[4] MERT M, KIRAL E. Influence of internal lipid on dyeing of wool fibers[J]. Textile Research Journal, 2010,80(4):365-373.
[5] KANTOUTH A, KANTOUTH F, EL-SAYED H. Surface modification of wool fabric for printing with acid and reactive dyes[J]. Coloration Technology, 2010,122(4):213-216.
[6] 安亚洁, 李敏, 杜长森, 等. 微量墨滴在蚕丝机织物上的扩散行为[J]. 纺织学报, 2018,39(4):87-92.
AN Yajie, LI Min, DU Changsen, et al. Diffusion behavior of micro droplet on silk woven fabrics[J]. Journal of Textile Research, 2018,39(4):87-92.
[7] 关芳兰, 夏婧菁. 羊毛织物数码印花工艺研究[J]. 毛纺科技, 2009,37(3):31-34.
GUAN Fanglan, XIA Jingjing. Study on ink-jet printing process of wool fabric[J]. Wool Textile Journal, 2009,37(3):31-34.
[8] 董利光. 羊毛织物数码印花工艺研究[D]. 北京: 北京服装学院, 2010: 42-60.
DONG Liguang. Research on ink jet printing process of wool fabrics[D]. Beijing: Beijing Institute of Fashion, 2010: 42-60.
[9] 朱强. 羊毛织物数码喷墨印花技术的研究[D]. 苏州:苏州大学, 2015: 38-58.
ZHU Qiang. Studies on the digital ink-jet printing wool fabric[D]. Suzhou: Soochow University, 2015: 38-58.
[10] 朱卫华, 刘义东, 陈世军. 经常压等离子体预处理后羊毛织物的数码印花工艺[J]. 毛纺科技, 2018,46(5):37-41.
ZHU Weihua, LIU Yidong, CHEN Shijun. Study on digital printing technology of wool fabric after pretreatment with the normal pressure plasma[J]. Wool Textile Journal, 2018,46(5):37-41.
[11] EL-SAYED H, EL-KHATIB E. Modification of wool fabric using ecologically acceptable UV-assisted treatments[J]. Journal of Chemical Technology & Biotechnology, 2005,80(10):1111-1117.
[12] MOJSOV K. Enzymatic treatment of wool fabrics- opportunity of the improvement on some physical and chemical properties of the fabrics[J]. Journal of the Textile Institute Proceedings & Abstracts, 2017,108(7):1136-1143.
[13] WANG P, WANG Q, FAN X, et al. Effects of cutinase on the enzymatic shrink-resist finishing of wool fabrics[J]. Enzyme & Microbial Technology, 2009,44(5):302-308.
[14] ONAR N, SARIIŞIK M. Use of enzymes and chitosan biopolymer in wool dyeing[J]. Fibres & Textiles in Eastern Europe, 2005,13(1):54-59.
[15] WANG L, YAO J B, LIU J Y, et al. Study on rapid wool shrinkproof method based on protease treat-ment[J]. Key Engineering Materials, 2016,671:324-330.
[16] YIN X M, LIU J Y, YAO J B, et al. Application of synergetic protease catalytic system in wool treat-ment[J]. Key Engineering Materials, 2015,671:19-24.
[17] 刘建勇, 吴胜争, 赵笑康. 生物酶协同催化体系及其对羊毛纤维的作用机制[J]. 纺织学报, 2018,39(1):71-78.
LIU Jianyong, WU Shengzheng, ZHAO Xiaokang. Biological enzyme synergistic catalytic system and its mechanism on wool fiber[J]. Journal of Textile Research, 2018,39(1):71-78.
[18] JOKO K, YOSHIKASTU Y, SAKATA K. Function of the cell membrane complex on dyeing of wool fibers with oxidation dye[J]. Seni Gakkaishi, 2006,62(12):280-286.
[19] BAI R, YU Y, WANG Q, et al. Effect of laccase on dyeing properties of polyphenol-based natural dye for wool fabric[J]. Fibers and Polymers, 2016,17(10):1613-1620.
[20] BULUT M O, SANA N H. Modification of woolen fabric with plasma for a sustainable production[J]. Fibers and Polymers, 2018,19(9):1887-1897.
[21] DING C, YU J, CHEN W. The structure and properties of wool treated with a reversed-phase microemulsion containing aqueous alkali[J]. Textile Research Journal, 2016,88(3):254-260.
[22] FERRERO F, MOSSOTTI R, INNOCENTI R, et al. Enzyme-aided wool dyeing: influence of internal lipids[J]. Fibers and Polymers, 2015,16(2):363-369.
[1] . Measurement for bending behavior by bowknot method [J]. Journal of Textile Research, 2019, 40(08): 35-39.
[2] . Preparation and properties of multifunctional composite conductive wool fabric [J]. Journal of Textile Research, 2019, 40(08): 117-123.
[3] YANG Haizhen, FANG Kuanjun, LIU Xiuming, CAI Yuqing, AN Fangfang, HAN Shuang. Influence of cotton fabric structure on ink droplet spreading and color performance [J]. Journal of Textile Research, 2019, 40(07): 78-84.
[4] . Innovation design and performance test of needle composite wool fabric [J]. Journal of Textile Research, 2019, 40(03): 49-53.
[5] ZHANG Wenjuan, JI Feng, ZHANG Ruiyun, ZHAO Xiaojie, WANG Ni, WANG Junli, ZHANG Jianxiang. Study on relationship between capillary characteristics and moisture permeability of wool fabrics [J]. Journal of Textile Research, 2019, 40(01): 67-72.
[6] . Antibacterial dyeing of wool fabric with nano prodigiosins produced by microorganism [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(02): 91-96.
[7] . Synthesis and performance evaluation of mothproof naphthoquinone pigments for wool fabrics [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(10): 70-74.
[8] . Influence of rotating-drying model on properties of wool fabric drying in domestic dryer [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(07): 69-74.
[9] . Fluorine-free water repellent finish of worsted fabric [J]. Journal of Textile Research, 2016, 37(3): 114-118.
[10] . Influence of dye solution pH value on dyeing effects and antibacterial properties of wool fabrics dyed with tea natural dye [J]. JOURNAL OF TEXTILE RESEARCH, 2016, 37(11): 86-91.
[11] . Influence of inkjet printing parameters on imagine definition of coated pigment ink inkjet printing [J]. JOURNAL OF TEXTILE RESEARCH, 2016, 37(08): 72-76.
[12] . Dyeing kinetics and thermodynamics of sorghum husk colorant onto wool fabric [J]. Journal of Textile Research, 2015, 36(03): 70-75.
[13] . Improve color fastness of inkjet printing textiles using pigment ink [J]. Journal of Textile Research, 2015, 36(02): 141-147.
[14] . Dyeing properties of HTCC treated wool fabrics with acid dyes [J]. JOURNAL OF TEXTILE RESEARCH, 2014, 35(8): 59-0.
[15] . Physical and chemical properties of surface modification wool by oxidation reduction method [J]. JOURNAL OF TEXTILE RESEARCH, 2014, 35(7): 1-0.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!