Journal of Textile Research ›› 2019, Vol. 40 ›› Issue (02): 94-99.doi: 10.13475/j.fzxb.20180601506

• Textile Engineering • Previous Articles     Next Articles

Characteristics of capacitive pressure sensor based on warp-knitted spacer fabric

SUN Wan, MIAO Xuhong(), WANG Xiaolei, JIANG Gaoming   

  1. Engineering Research Center for Knitting Technology, Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, China
  • Received:2018-06-01 Revised:2018-08-07 Online:2019-02-15 Published:2019-02-01
  • Contact: MIAO Xuhong E-mail:miaoxuhong@163.com

Abstract:

In order to achieve the intelligent cushion monitoring human sitting posture to assist human health, six types of warp-knitted spacer fabrics were used as the dielectric layer to prepare pressure-capacitance sensors. The static performance of warp-knitted spacer fabric pressure-capacitance sensors was studied. Compression and electrical experiments were performed on six kinds of sensors to obtain a stress-capacitance curve. Combining the compression performance of the warp-knitted spacer fabric, the stress-capacitance curve of the sensor was divided into three stages, and the sensitivity and linearity of each stage were studied. The results show that as the pressure increases, the linearity of the capacitive pressure sensor gradually deteriorates. The sensitivity of the capacitive pressure sensor gradually increases and then gradually decreases. In the compressed platform area of the spacer fabric, the capacitive sensor has the greatest sensitivity, and in the elastic area where the spacer fabric is compressed, the capacitive sensor has the best linearity.

Key words: spacer fabric, pressure capacitive sensor, sensitivity, linearity

CLC Number: 

  • TS181

Fig.1

Pressure capacitive sensor based on warp-knitted spacer fabric"

Tab.1

Warp-knitted spacer fabric specification parameters"

编号 上表面
结构
下表面
结构
间隔丝
直径/mm
间隔丝面密度/
(根·cm-2)
间隔丝
长度/mm
1# 结构1 结构1 0.16 80 22.6
2# 结构2 结构2 0.16 64 21.0
3# 结构1 结构1 0.18 97 29.5
4# 结构3 结构4 0.18 63 15.5
5# 结构1 结构1 0.20 94 30.2
6# 结构5 结构6 0.20 91 12.1

Fig.2

Surface structure of warp-knitted spacer fabric. (a) Structure 1; (b) Structure 2; (c) Structure 3;(d) Structure 4; (e) Structure 5; (f) Structure 6"

Fig.3

Experimental process"

Fig.4

Sensor characteristic curve of stress-capacitamce (a) and stress-relative capacitance(b)"

Fig.5

Sensor characteristic curve of stress-strain"

Tab.2

Linearity and strain range of sensor in three stages"


E1 应变/% E2 应变/% E3 应变/%
1# 0.216 0~30 12.120 30~60 13.028 60~75
2# 2.968 0~30 6.688 30~60 19.357 60~85
3# 2.861 0~30 7.837 30~60 20.455 60~78
4# 5.678 0~30 7.933 30~60 9.933 60~78
5# 1.750 0~30 3.479 30~60 9.695 60~75
6# 3.633 0~30 4.280 30~60 8.889 60~70

Tab.3

Sensitivity and stress ranges for three stages of sensor"

试样
S1 应力范围/kPa S2 应力范围/kPa S3 应力范围/kPa
1# 4.593 0~9.188 24.662 9.188~14.498 1.292 14.498~276.779
2# 12.254 0~3.026 45.263 3.026~5.307 3.522 5.829~191.420
3# 4.356 0~8.716 15.158 8.716~15.735 1.045 15.735~383.800
4# 3.512 0~12.002 11.576 12.002~21.760 2.062 21.760~209.680
5# 3.770 0~9.750 8.386 9.750~24.486 1.085 24.486~337.887
6# 1.126 0~28.192 8.091 28.192~43.036 1.107 43.036~215.246
[1] 马艳丽, 刘茜, 刘玮. 用于智能纺织品的柔性传感器研究进展[J]. 传感器与微系统, 2015,34(4):1-3,7.
MA Yanli, LIU Qian, LIU Wei, Research progress of flexible sensor for smart textiles[J]. Transducer and Microsystem Technologies, 2015,34(4):1-3,7.
[2] 侯玉群. 柔性电容式应力传感器及其灵敏度影响因素研究[D]. 北京:北京印刷学院, 2015: 21-39.
HOU Yuqun. Study on the flexible capacitive strain sensor and its effect factors on sensitivity[D]. Beijing: Beijing Institute of Graphic Communication, 2015: 21-39.
[3] 戴宇. 用于人工假肢的分布式柔性电容触觉传感器的设计与制造[D]. 杭州:浙江大学, 2014: 46-49.
DAI YU. Design and fabrication of distributed flexible capacitive tactile sensor for artificial prosthesis[D]. Hangzhou: Zhejiang University, 2014: 46-49.
[4] MEYER J, ARNRICH B, SCHUMM J, et al. Design and modeling of a textile pressure sensor for sitting posture classification[J]. IEEE Sensors Journal, 2010,10(8):1391-1398.
[5] HOLLECZEK T, RÜEGG A, HARMS H, et al. Textile pressure sensors for sports applications [C]//Sensors, 2010 IEEE. [S.L]: IEEE, 2010: 732-737.
[6] ENOKIBORI Y, SUZUKI A, MIZUNO H, et al. E-textile pressure sensor based on conductive fiber and its structure [C]//Proceedings of the 2013 ACM Conference on Pervasive and Ubiquitous Computing Adjunct Publication.[S.l.]: ACM, 2013: 207-210.
[7] TAKAMATSU S, YAMASHITA T, ITOH T. Meter-scale large-area capacitive pressure sensors with fabric with stripe electrodes of conductive polymer-coated fibers[J]. Microsystem Technologies, 2016,22(3):451-457.
[8] LEE J, KWON H, SEO J, et al. Conductive fiber‐based ultrasensitive textile pressure sensor for wearable electronics[J]. Advanced Materials, 2015,27(15):2433-2439.
pmid: 25692572
[9] MCKNIGHT M, AGCAYAZI T, KAUSCHE H, et al. Sensing textile seam-line for wearable multimodal physiological monitoring [C]//Engineering in Medicine and Biology Society (EMBC), 2016 IEEE 38th Annual International Conference of the IEEE[S.l.]: IEEE, 2016: 311-314.
[10] COOPER C B, ARUTSELVAN K, LIU Y, et al. Stretchable capacitive sensors of torsion, strain, and touch using double helix liquid metal fibers[J]. Advanced Functional Materials. DOI: 10.1002/adfm.201605630.
doi: 10.1002/adfm.202000639 pmid: 32802013
[11] 缪旭红, 葛明桥. 衬垫用经编间隔织物的压陷性能[J]. 纺织学报, 2009,30(5):43-47.
MIAO Xuhong, GE Mingqiao. Indentation force deflectionproperty of cushioning warp-knitted spacer fabric[J]. Journal of Textile Research, 2009,30(5):43-47.
[12] 缪旭红, 葛明桥. 衬垫用经编间隔织物振动特性探讨[J]. 纺织学报, 2008,29(11):57-60.
MIAO Xuhong, GE Mingqiao. Vibration behavior ofcushioning warp knitted spacer fabric[J]. Journal of Textile Research, 2008,29(11):57-60.
[13] KWON D, LEE T I, SHIM J, et al. Highly sensitive, flexible, and wearable pressure sensor based on a giant piezocapacitive effect of three-dimensional microporous elastomeric dielectric layer[J]. ACS Applied Materials & Interfaces, 2016,8(26):16922-16931.
doi: 10.1021/acsami.6b04225 pmid: 27286001
[14] 缪旭红. 经编间隔织物力学性能研究[D]. 无锡:江南大学, 2009: 44-45.
MIAO Xuhong. The research of warp knitting fabric mechanical properties[D]. Wuxi: Jiangnan University, 2009: 44-45.
[15] 张培仁. 传感器原理、检测及应用[M]. 北京: 清华大学出版社, 2012: 8-13.
ZHANG Peiren. Sensor Principle, Detection and Application [M]. Beijing: Tsinghua University Press, 2012: 8-13.
[16] LEE H K. Real-time measurement of the three-axis contact force distribution using a flexible capacitive polymer tactile sensor[J]. Journal of Micromechanics and Micro Engineering, 2011,2l(3):035010.
[17] KIM H K, LEE S, YUN K S, Capacitive tactile sensor array for touch screen application[J]. Sensors and Actuators A: Physical, 2011,165(1):2-7.
[18] LEI K E, LEE K F, LEE M Y, Development of a flexible PDMS capacitive pressure sensor for plantar pressure measurement[J]. Microelectronic Engineering, 2012,99:1-5.
[19] 叶晓华. 功能性间隔织物的结构与性能研究[D]. 上海:东华大学, 2007: 68-70.
YE Xiaohua. Study on the structure and properties of functional spacer fabric[D]. Shanghai: Donghua University, 2007: 68-70.
[1] LI Sijie, ZHANG Caidan. Preparation of poly(aspartic acid) based fiber hydrogel and its drug release behavior [J]. Journal of Textile Research, 2020, 41(02): 20-25.
[2] ZHANG Xiaohui, YANG Tong, MA Pibo. Preparation and compression properties of bamboo-structure hollow monofilaments by 3D printing [J]. Journal of Textile Research, 2019, 40(12): 32-38.
[3] JIA Gaopeng, SONG Xiaohong, LI Ying, LIU Xiaodan, PAN Xueru. Current response in stretching process of Cu-Ni metal-coated woven fabric [J]. Journal of Textile Research, 2019, 40(10): 68-72.
[4] CHEN Meiyu, SUN Runjun, ZHANG Changqi, LIU Xianfeng. Pressure reduction property of warp-knitted spacer fabric [J]. Journal of Textile Research, 2019, 40(07): 58-63.
[5] SUN Wan, MIAO Xuhong, WANG Xiaolei. Tearing properties of Jacquard warp knitted spacer fabric [J]. Journal of Textile Research, 2019, 40(06): 32-37.
[6] YANG Wanqiu, LIU Xiaoyan, YU Weidong. Buffering effect of spacer fabric for multi-layer stab-resistant materials [J]. Journal of Textile Research, 2019, 40(04): 51-54.
[7] GUO Huixin, ZHANG Ganqing. Sensitivity analysis on kinematic accuracy of needle bar mechanism in embroidery machine [J]. Journal of Textile Research, 2019, 40(01): 142-146.
[8] . Low velocity impact resistance of warp-knitted spacer fabrics of negative Poisson's ratio [J]. Journal of Textile Research, 2018, 39(11): 45-49.
[9] . Tensile properties under quasi-static of auxetic warp-knitted spacer fabrics [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(04): 47-53.
[10] . Tensile strain sensing characteristics of carbon nanoyarns [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(03): 14-18.
[11] . Compression property of curved three-dimensional flat-knitted spacer fabric composites [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(01): 62-65.
[12] . Research progress of human skin wetness perception [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(09): 174-180.
[13] . Modeling and tensile performance of negative Poissin's ratio warp-knitted spacer structures based on mesh structure [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(09): 59-65.
[14] . Compression fatigue resistance of automobile cushion fabric based on three-dimensional warp-knitted spacer structure [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(05): 64-68.
[15] . Tensile characteristics of warp knitted spacer fabrics [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(04): 55-60.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!