Journal of Textile Research ›› 2019, Vol. 40 ›› Issue (09): 42-47.doi: 10.13475/j.fzxb.20180601806

• Textile Engineering • Previous Articles     Next Articles

Influence of compact spinning air guide element shifting on compaction effect

MA Xiaolin1, TANG Xinjun1, SONG Junyan1(), LIU Xia1, ZHANG Yugao2   

  1. 1. Xinjiang Esquel Textile Co., Ltd., Urumchi, Xinjiang 830054, China
    2. Guangdong Esquel Textile Co., Ltd., Foshan, Guangdong 528600, China
  • Received:2018-06-01 Revised:2019-06-14 Online:2019-09-15 Published:2019-09-23
  • Contact: SONG Junyan E-mail:songjy@esquel.com

Abstract:

The air guide element of the third generation Rieter compact system shifts in production line, in order to analyze the influence to the compacting effect, five feature points including the center point, 1.5 mm and 2.5 mm shifting to left and right were selected. Fluent software were adopted to simulate the flow field and using CFD software to analyze the results of the simulation. Results show that the shift of 1.5 mm and 2.5 mm causes variation in airflow velocity and hydrostatic pressure. Spinning experiment verifies the simulation analysis results. It is concluded that when the shifts is 1.5 mm, the yarn quality variation is small, but when the shifts is 2.5 mm the yarn quality varies obviously, and the yarn evenness increases by 3% and hairiness increases by 8%.

Key words: compacting system, air guide element, shifting, flow field simulation, compacting effect

CLC Number: 

  • TS112

Fig.1

Schematic diagram of compacting system with nesting zone"

Fig.2

Schematic diagram of nesting zone extractable model"

Fig.3

Schematic diagram of feature face. (a) Feature face 1; (b) Feature face 2"

Fig.4

Flow velocity nephogram of feature face 1. (a) Center position; (b) Left 1.5 mm shifting; (c) Left 2.5 mm shifting"

Fig.5

Characteristic line of velocity"

Fig.6

Flow static pressure nephogram of feature face 1. (a) Center position; (b) Left 1.5 mm shifting; (c) Left 2.5 mm shifting"

Fig.7

Characteristic line of static pressure"

Tab.1

Quality data table of 9.72 tex"

位置 偏移/mm 条干CVm/% 毛羽指数H 强力/cN
L 2.5 12.45 2.98 225
L 1.5 12.29 2.70 229
M 0.0 12.15 2.70 235
R 1.5 12.21 2.66 232
R 2.5 12.55 3.10 218

Tab.2

Quality data table of 7.28 tex"

位置 偏移/mm 条干CVm/% 毛羽指数H 强力/cN
L 2.5 14.22 3.21 153
L 1.5 14.01 3.07 154
M 0.0 13.99 3.08 154
R 1.5 14.11 3.18 152
R 2.5 14.51 3.34 155
[1] 谢春萍, 高卫东, 刘新金, 等. 一种新型窄槽式负压空心罗拉全聚纺系统[J]. 纺织学报, 2013,34(6):137-141.
XIE Chunping, GAO Weidong, LIU Xinjin, et al. Novel complete condensing spinning system with strip groove structure[J]. Journal of Textile Research, 2013,34(6):137-141.
[2] 马利新. 立达K44型卡摩纺细纱机的性能特点[J]. 棉纺织技术, 2007,35(5):62-64.
MA Lixin. Performance characteristic of Rieter K44 comfort spinning[J]. Cotton Textile Technology, 2007,35(5):62-64.
[3] 陆宗源. 从卡摩纺导流板的变迁看集聚原理[J]. 纺织器材, 2015,42(6):48-51.
LU Zongyuan. Analysis of the compact spinning principle starting from the deelopment of the air guide element for comforSpin spinning process[J]. Textile Accessories, 2015,42(6):48-51.
[4] 沈晓来. 立达K44紧密纺装置主要元件的作用[J]. 上海纺织科技, 2005,33(2):27-37.
SHEN Xiaolai. Function of main elements of Rieter K44 compact spinning set[J]. Shanghai Textile Science & Technology, 2005,33(2):27-37.
[5] SU Xuzhong, GAO Weidong, LIU Xinjin, et al. Numerical simulation of a three-dimensional flow field in compact spinning with a perforated drum:effect of a guiding device[J]. Textile Research Journal, 2013,83(19):2093-2108.
doi: 10.1177/0040517513483859
[6] 谢春萍, 杨欣欣, 陈隆云, 等. 一种窄槽式空心罗拉紧密纺气流导向片: 203593818U[P]. 2014-05-14.
XIE Chunping, YANG Xinxin, CHEN Longyun, et al. Narrow groove-type hollow roller compact spinning air flow guide piece: 203593818U[P]. 2014-05-14.
[7] 刘新金, 苏旭中, 谢春萍, 等. 一种可提高集聚效果的气流导向装置: 204298538U[P]. 2015-04-29.
LIU Xinjin, SU Xuzhong, XIE Chunping, et al. Airflow guiding device capable of improving gathering effect: 204298538U[P]. 2015-04-29.
[8] 刘新金, 苏旭中, 贺文慧, 等. 一种带有弧形进气通道的气流导向装置: 205556886U[P]. 2016-09-07.
LIU Xinjin, SU Xuzhong, HE Wenhui, et al. Air current guider with arcinlet channel: 205556886U[P]. 2016-09-07.
[9] 罗来晨, 李群华, 谢春萍, 等. 基于Fluent的全聚纺集聚区流场模拟与分析[J]. 上海纺织科技, 2014,42(4):26-29.
LUO Laichen, LI Qunhua, XIE Chunping, et al. Simulation and analysis of airflow field in complete condensing spinning by using Fluent[J]. Shanghai Textile Science & Technology, 2014,42(4):26-29.
[10] 梅恒, 徐伯俊, 苏旭中, 等. 网眼罗拉紧密纺集聚区三维流场数值模拟与分析[J], 纺织学报, 2013,34(4):122-126.
MEI Heng, XU Bojun, SU Xuzhong, et al. Three dimensional flow field numerical simulation and analysis of compact spinning with perforated rollers[J]. Journal of Textile Research, 2013,34(4):122-126.
[11] 纪兵兵, 张晓霞, 古艳. ANSYS ICEM CFD基础教程与实例详解[M]. 北京: 机械工业出版社, 2015: 32-36.
JI Bingbing, ZHANG Xiaoxia, GU Yan. Basic Course and Example Explanation of ANSYS ICEM CFD[M]. Beijing: China Machine Press, 2015: 32-36.
[12] 王福军. 计算流体动力学分析: CFD软件原理与应用[M]. 北京: 清华大学出版社, 2004: 13-15.
WANG Fujun. Computational Fluid Dynamics and Analysis: Principles and Application Software CFD[M]. Beijing: Tsinghua University Press, 2004: 13-15.
[1] YUAN Ruwang, ZHU Leilei, LÜ Xuekui, YANG Jiamin. Modeling of rotary shifting motion characteristics of electronic dobby and influence thereof on shedding mechanisms driving [J]. Journal of Textile Research, 2019, 40(12): 127-133.
[2] QIAN Cheng, LIU Yanqing, LIU Xinjin, XIE Chunping, XU Bojun. Simulation and analysis of three-dimensional flow field in four-roller compact spinning system [J]. Journal of Textile Research, 2019, 40(10): 56-61.
[3] . Experimental study of grating phase-shifting profilometry for body measurement [J]. JOURNAL OF TEXTILE RESEARCH, 2013, 34(6): 83-87.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!