Journal of Textile Research ›› 2019, Vol. 40 ›› Issue (8): 48-54.doi: 10.13475/j.fzxb.20180606907

• Textile Engineering • Previous Articles     Next Articles

Numerical simulation on low velocity impact response of three-dimensional sandwich composites with different core height

LUO Chao, CAO Haijian(), HUANG Xiaomei   

  1. School of Textile and Clothing, Nantong University, Nantong, Jiangsu 226019, China
  • Received:2018-06-25 Revised:2019-04-11 Online:2019-08-15 Published:2019-08-16
  • Contact: CAO Haijian E-mail:caohaijian@ntu.edu.cn

Abstract:

In order to study the mechanical response and damage mechanism of the three-dimensional sandwich composites at low velocity, a microstructural model of three-dimensional sandwich composites with different core material heights was established for simulation by means of the ANSYS finite element software, and the simulated values were compared with the experimental values. The results show that the low velocity impact resistance of the sandwich composite material increases with the increase of the core material height from the macroscopic angle, and the damage of the material with the height of 5 mm is more serious when the upper plate is damaged, and the simulation results have a good consistency with the experimental results. From the microscopic perspective, the warp, weft and junction warp are the main bearing bodies, and the resin matrix plays a secondary role. Under the impact of 5 J energy, the main failure modes of the material are resin deformation, fragmentation and fiber debonding.

Key words: three-dimensional sandwich composite, low velocity impact, core height, finite element method

CLC Number: 

  • TU599

Fig.1

Three-dimensional sandwich fabrics (a) and its composites (b)"

Fig.2

Material structure model with core height of 5 mm. (a) Fabric structure model;(b) Resin structure model; (c) Composite material structural model"

Tab.1

Model material parameters"

材料 弹性模量/
GPa
密度/
(g·cm-3)
拉伸强度/
GPa
泊松比
玻璃纤维 70 2.50 3.00 0.25
环氧树脂 1 1.20 0.07 0.38
结构钢 200 7.85 0.46 0.30

Fig.3

Structure model of two core materials height"

Fig.4

Stress map of lower panel of whole model of two core material height. (a) Top panel of 5 mm; (b) Top panel of 10 mm; (c) Core material of 5 mm; (d) Core material of 10 mm; (e) Lower panel of 5 mm; (f) Lower panel of 10 mm"

Fig.5

Surface topography of two kinds of materials after low velocity impact. (a) Upper surface topography of 5 mm; (b) Upper surface topography of 10 mm;(c) Lower surface topography of 5 mm; (d) Lower surface topography of 10 mm; (e) Core material topography of 5 mm; (f) Core material topography of 10 mm;(g) Morphology of local damage of material core;(h) Topography of local surface damage on materials"

Fig.6

Low speed impact response of two materials at 5 J energy"

Fig.7

Stress cloud of each component of two materials. (a) Resin model of 5 mm;(b) Resin model of 10 mm; (c) Connection yarn model of 5 mm; (d) Connection yarn model of 10 mm; (e) Warp model of 5 mm; (f) Warp model of 10 mm; (g) Weft model of 5 mm; (h) Weft model of 10 mm"

Fig.8

Strain cloud map of the two materials. (a) Overall model of 5 mm; (b) Overall model of 10 mm; (c) Resin model of 5 mm; (d) Resin model of 10 mm; (e) Fabric model of 5 mm; (f) Fabric model of 10 mm"

[1] 顾伯洪, 孙宝忠 . 纺织结构复合材料冲击动力学[M]. 北京: 科学出版社, 2012: 1-20.
GU Bohong, SUN Baozhong. Impact Dynamics of Textile Structural Composites [M]. Beijing: Science Press, 2012: 1-20.
[2] ELIAS A, LAURIN F, KAMINISKI M , et al. Experimental and numerical investigations of low energy/velocity impact damage generated in 3D woven composite with polymer matrix[J]. Composite Structures, 2017,159:228-239.
doi: 10.1016/j.compstruct.2016.09.077
[3] RAVANDI M, TEO W S, TRAN L Q N , et al. Low velocity impact performance of stitched flax/epoxy composite laminates[J]. Composites Part B: Engineering, 2017,117:89-100.
doi: 10.1016/j.compositesb.2017.02.003
[4] LASCOUP B, ABOURA Z, KHELLIL K , et al. Impact response of three-dimensional stitched sandwich composite[J]. Composite Structures, 2010,92(2):347-353.
doi: 10.1016/j.compstruct.2009.08.012
[5] VAIDYA A S, VAIDYA U K, UDDIN N . Impact response of three-dimensional multifunctional sandwich composite[J]. Materials Science & Engineering A (Structural Materials: Properties, Microstructure and Processing), 2008,472(1/2):52-58.
[6] 曹海建, 钱坤, 盛东晓 , 等. 芯材高度对整体中空复合材料力学性能的影响[J]. 上海纺织科技, 2010,38(9):54-57.
CAO Haijian, QIAN Kun, SHENG Dongxiao , et al. Effect of core height on mechanical properties of hollow composites[J]. Shanghai Textile Science & Technology, 2010,38(9):54-57.
[7] 龚小辉, 赖家美, 陈乐乐 , 等. CF/GF层间混杂增强缝合泡沫夹芯复合材料低速冲击性能试验研究[J]. 塑料工业, 2017,45(11):104-108,126.
GONG Xiaohui, LAI Jiamei, CHEN Lele , et al. Experimental study on low velocity impact properties of CF/GF interlayer hybrid reinforced foam sandwich composites[J]. Plastic Industry, 2017,45(11):104-108,126.
[8] 杨莉 . ProE模型导入ANSYS问题的思考[J]. 科技传播, 2017,9(5):6-7.
YANG Li . ProE model import ANSYS problem thinking[J]. Science and Technology Communication, 2017,9(5):6-7.
[9] 巨文涛, 代卫卫 . ANSYS Workbench在结构瞬态动力学分析中的应用[J]. 内蒙古煤炭经济, 2014(8):110-113.
JU Wentao, DAI Weiwei . Application of ANSYS Workbench in structural transient dynamic analysis[J]. Inner Mongolia Coal Economy, 2014 ( 8):110-113.
[10] 朱长华, 赵宝, 裴浩楠 , 等. 基于ANSYS/LS-DYNA连续玄武岩纤维材料护栏碰撞吸能分析[J]. 沈阳大学学报(自然科学版), 2017(5):75-78.
ZHU Changhua, ZHAO Bao, PEI Haonan , et al. Collision energy absorption analysis of continuous basalt fiber fence based on ANSYS/LS-DYNA[J]. Journal of Shenyang University(Natural Science Edition), 2017 ( 5):75-78.
[11] 毛春见, 许希武, 田静 , 等. 缝合复合材料层板低速冲击损伤研究[J]. 固体力学学报, 2011,32(1):43-56.
MAO Chunjian, XU Xiwu, TIAN Jing , et al. Study on low velocity impact damage of stitched composite laminates[J]. Journal of Solid Mechanics, 2011,32(1):43-56.
[12] MOURA M F S F D MARQUES A T . Prediction of low velocity impact damage in carbon-epoxy laminates[J]. Composites Part A: Applied Science & Manufacturing, 2013,67(3):489-496.
[13] FENG D, AYMERICH F . Damage prediction in composite sandwich panels subjected to low-velocity impact[J]. Composites Part A: Applied Science and Manufacturing, 2013,52:12-22.
doi: 10.1016/j.compositesa.2013.04.010
[14] 钭李昕, 王秋成, 陈光耀 . 碳纤维复合材料低速冲击特性及损伤分析研究[J]. 机电工程, 2016,33(7):815-821.
YONG Lixin, WANG Qiucheng, CHEN Guangyao . Low-speed impact characteristics and damage analysis of carbon fiber composites[J]. Mechatronics Engineering, 2016,33(7):815-821.
[15] YANG B, WANG Z, ZHOU L , et al. Study on the low-velocity impact response and CAI behavior of foam-filled sandwich panels with hybrid facesheet[J]. Composite Structures, 2015,132:1129-1140.
doi: 10.1016/j.compstruct.2015.07.058
[16] 祝露, 刘伟庆, 方海 , 等. 腹板增强复合材料夹层板低速冲击试验与有限元分析[J]. 南京工业大学学报(自然科学版), 2017,39(5):126-132.
ZHU Lu, LIU Weiqing, FANG Hai , et al. Low speed impact test and finite element analysis of sandwich plate reinforced composite sandwich plates[J]. Journal of Nanjing University of Technology(Natural Science Edition), 2017,39(5):126-132.
[1] LIU Qiannan, ZHANG Han, LIU Xinjin, SU Xuzhong. Simulation on tensile mechanical properties of three-elementary weave woven fabrics based on ABAQUS [J]. Journal of Textile Research, 2019, 40(04): 44-50.
[2] . Low velocity impact resistance of warp-knitted spacer fabrics of negative Poisson's ratio [J]. Journal of Textile Research, 2018, 39(11): 45-49.
[3] . Bending properties and finite element method simulation of honeycomb 3-D integrated woven composites [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(11): 56-60.
[4] ZUO Zhonge;WANG Rui;XU Lei. Mechanical strength prediction of the plain woven fabric composite: 2. finite element analysis of composite laminates under tensile stress [J]. JOURNAL OF TEXTILE RESEARCH, 2010, 31(1): 64-67.
[5] LI Dan;YU Pu. Influence of fiber end dimension on its bending behavior [J]. JOURNAL OF TEXTILE RESEARCH, 2008, 29(9): 23-25.
[6] CHEN Zhi-ping;SHEN Jian-min;WANG Lu-fang. 接触单元;蒸汽定型锅;应力分析;有限元法 [J]. JOURNAL OF TEXTILE RESEARCH, 2005, 26(6): 65-67.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(03): 19 -20 .
[2] . [J]. JOURNAL OF TEXTILE RESEARCH, 1984, 5(09): 30 -32 .
[3] WEI Jing. Rise tendency change of the turn collar[J]. JOURNAL OF TEXTILE RESEARCH, 2005, 26(5): 103 -105 .
[4] LI Wei-feng . Research and manufacture of geomembrane waterpower test instrument based on RS-485 bus[J]. JOURNAL OF TEXTILE RESEARCH, 2005, 26(1): 107 -109 .
[5] . [J]. JOURNAL OF TEXTILE RESEARCH, 1982, 3(10): 19 -20 .
[6] . [J]. JOURNAL OF TEXTILE RESEARCH, 1986, 7(05): 27 .
[7] . [J]. JOURNAL OF TEXTILE RESEARCH, 2002, 23(06): 10 -11 .
[8] . [J]. JOURNAL OF TEXTILE RESEARCH, 2003, 24(05): 33 -34 .
[9] . [J]. JOURNAL OF TEXTILE RESEARCH, 1997, 18(04): 46 -48 .
[10] . [J]. JOURNAL OF TEXTILE RESEARCH, 1995, 16(06): 59 -61 .