Journal of Textile Research ›› 2019, Vol. 40 ›› Issue (05): 124-130.doi: 10.13475/j.fzxb.20180607907

• Apparel Engineering • Previous Articles     Next Articles

Recognition of special template based on improved analytic hierarchy process

ZHOU Jie1(), LI Jian1, MA Qiurui1, HUANG Xiaojie2   

  1. 1. School of Apparel and Art Design, Xi'an Polytechnic University, Xi'an, Shaanxi 710048, China
    2. College of Information & Business, Zhongyuan University of Technology, Zhengzhou, Henan 450007, China
  • Received:2018-06-25 Revised:2019-01-29 Online:2019-05-15 Published:2019-05-21

Abstract:

Aiming at the shortcomings of conventional analytic hierarchy process, an improved analytic hierarchy process based on combination factor analysis and cluster analysis was proposed and applied to special model recognition. Firstly, factor analysis was applied to determine the influencing factors and weight coefficients of each level of indicators. Then, K-means cluster analysis was applied to collect the special samples into three typical models such as hip, chest and abdomen. Finally, the analytic hierarchy process was applied to determine the weight of each indicator, and a special model-level hierarchical structure model including six secondary indicators, 13 third-level indicators and three four-level indicators was constructed. Three samples were randomly selected for empirical research. The five principal components extracted from the factor analysis were used as clustering indicators, and the K-means method was used for clustering. The specific sample-level hierarchical structure model was applied to identify the sample to be tested and hip and chest. The results show that the method can effectively characterize the variation of the special model and identify the model category.

Key words: special template, factor analysis, cluster analysis, improved analytic hierarchy process

CLC Number: 

  • TS941.712

Fig.1

Typical index of special body correction model"

Fig.2

Flow chart of improved analytic hierarchy process"

Tab.1

Principal component factor analysis"

成分 初始特征值 因子旋转后
特征根 方差贡
献率/%
累计贡
献率/%
特征根 方差贡
献率/%
累计贡
献率/%
1 3.232 24.865 24.865 2.740 21.076 21.076
2 2.281 17.545 42.410 2.311 17.777 38.853
3 1.882 14.473 56.884 2.189 16.840 55.693
4 1.139 8.764 65.648 1.274 9.800 65.493
5 1.027 7.902 73.550 1.047 8.057 73.550

Tab.2

Rotational load matrix"

评价
指标
成分
1 2 3 4 5
C1 -0.004 -0.117 0.898 0.019 -0.053
C2 0.826 -0.133 0.075 -0.010 0.124
C3 0.557 0.241 0.017 -0.267 0.116
C4 0.095 0.537 -0.296 -0.062 -0.531
C5 0.734 0.202 -0.003 0.489 -0.190
C6 0.793 0.083 -0.148 -0.132 0.011
C7 -0.035 -0.087 0.716 0.123 0.141
C8 0.068 0.952 -0.035 0.032 0.102
C9 0.742 0.045 -0.069 0.501 -0.194
C10 -0.031 0.090 0.854 -0.063 -0.114
C11 0.073 0.253 -0.106 0.055 0.765
C12 -0.061 0.007 0.081 0.817 0.126
C13 -0.075 -0.947 0.007 -0.024 -0.128

Tab.3

Variance analysis table"

聚类数 变量 类间
均方
误差
均方
F Sig.
3 因子1 35.603 0.810 43.960 0.000
因子2 96.744 0.474 204.132 0.000
因子3 65.601 0.645 101.699 0.000
因子4 6.849 0.968 7.077 0.001
因子5 8.209 0.960 8.547 0.000
4 因子1 16.043 0.876 18.321 0.000
因子2 45.592 0.631 72.200 0.000
因子3 38.712 0.688 56.241 0.000
因子4 60.413 0.509 118.692 0.000
因子5 37.000 0.702 52.671 0.000
5 因子1 35.831 0.615 58.250 0.000
因子2 50.323 0.455 110.602 0.000
因子3 40.349 0.565 71.390 0.000
因子4 49.733 0.462 107.758 0.000
因子5 15.047 0.845 17.811 0.000

Tab.4

Statistical table of average corrections for main parts of three specialty samplesmm"

样板类型 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13
D1 7.72 8.95 -2.32 -7.94 8.96 11.56 1.27 -2.43 7.41 -1.39 -1.85 0.17 2.00
D2 -0.85 -6.17 -8.75 -12.13 -9.95 -3.68 -2.42 -13.35 -1.95 -10.43 -9.37 -0.30 13.02
D3 -32.73 -5.28 -12.13 -2.09 3.55 4.60 -6.51 -0.78 4.68 -15.28 -2.28 0.61 0.76

Fig.3

Hierarchical structure of special template recognition model"

Tab.5

Judgment matrix scale and its meaning of aij"

标度(aij ) 含义
1 元素i与元素j同等重要
3 元素i比元素j稍重要
5 元素i比元素j颇重要
7 元素i比元素j极重要
9 元素i比元素j极端重要
2/4/6/8 分别介于以上标度的中间值
倒数 若元素j与元素i的关系是: aji=1/aij

Tab.6

Special sample recognition judgment matrix B-A"

类别 B1 B2 B3 B4 B5 权重
B1 1 7/6 21/17 7/3 21/8 0.290 0
B2 6/7 1 15/14 19/11 19/9 0.238 8
B3 17/21 14/15 1 19/11 2 0.227 2
B4 3/7 11/19 11/19 1 5/4 0.133 1
B5 8/21 9/19 1/2 4/5 1 0.110 9

Tab.7

Profile factor judgment matrix C-B1"

类别1 C2 C3 C5 C6 C9 权重
C2 1 7 5 3 4 0.484 5
C3 1/7 1 1/3 1/5 1/4 0.043 4
C5 1/5 3 1 1/3 1/2 0.089 8
C6 1/3 5 3 1 3 0.249 4
C9 1/4 4 2 1/3 1 0.132 9

Tab.8

Difference between the size of the main part of the sample to be tested and the special sample mm"

部位
指标
修正量 样本a与3类特体样板差值 样本b与3类特体样板差值 样本c与3类特体样板差值
样本a 样本b 样本c Δa1 Δa2 Δa3 Δb1 Δb2 Δb3 Δc1 Δc2 Δc3
C1 30 70 -70 22.28 30.85 62.73 62.28 70.85 102.73 -77.72 -69.15 -37.27
C2 -30 60 -40 -38.95 -23.83 -24.72 51.05 66.17 65.28 -48.95 -33.83 -34.72
C3 -15 0 -15 -12.68 -6.25 -9.38 2.32 8.75 5.62 -12.68 -6.25 -9.38
C4 -12 -20 -15 -4.06 0.13 -9.91 -12.06 -7.87 -17.91 -7.06 -2.87 -12.91
C5 8 45 -60 -0.96 17.95 4.45 36.04 54.95 41.45 -68.96 -50.05 -63.55
C6 -15 10 -28 -26.56 -11.32 -19.6 -1.56 13.68 5.4 -39.56 -24.32 -32.6
C7 -10 15 -15 -11.27 -7.58 -3.49 13.73 17.42 21.51 -16.27 -12.58 -8.49
C8 0 0 -10 2.43 13.35 0.78 2.43 13.35 0.78 -7.57 3.35 -9.22
C9 3 45 -40 -4.41 4.95 -1.68 37.59 46.95 40.32 -47.41 -38.05 -44.68
C10 10 35 -35 11.39 20.43 25.82 36.39 45.43 50.82 -33.61 -24.57 -19.18
C11 0 5 0 1.85 9.37 2.28 6.85 14.37 7.28 1.85 9.37 2.28
C12 10 0 0 9.83 10.3 9.39 -0.17 0.3 -0.61 -0.17 0.3 -0.61
C13 0 0 10 -2 -13.02 -0.76 -2 -13.02 -0.76 8 -3.02 9.24

Tab.9

Index layer total weight calculation and sorting"

二级指标 三级指标 四级指标单
排序权重
WD
总排序权重
W=WB×
WC×WD
指标 权重
WB
指标 单排序
权重WC
B1 0.290 0 C2 0.484 5 [0.700 7,0.097 2,
0.202 1]
W1=
0.293 7,
W2=
0.436 4,
W3=
0.269 9
C3 0.043 4 [0.637 0, 0.104 7,
0.258 3]
C5 0.089 8 [0.058 1, 0.735 2,
0.206 7]
C6 0.249 4 [0.637 0, 0.104 7,
0.258 3]
C9 0.132 9 [0.296 9, 0.617 5,
0.085 6]
B2 0.238 8 C8 0.750 0 [0.218 5, 0.714 7,
0.066 8]
C13 0.250 0 [0.148 8, 0.785 4,
0.065 8]
B3 0.227 2 C1 0.637 0 [0.081 0, 0.188 4,
0.730 6]
C7 0.104 7 [0.637 0, 0.258 3,
0.104 7]
C10 0.258 3 [0.071 9, 0.279 0,
0.649 1]
B4 0.133 1 C12 1.000 [0.280 8, 0.584 2,
0.135 0]
B5 0.110 9 C4 0.166 7 [0.227 1, 0.051 0,
0.721 9]
C11 0.833 3 [0.081 0, 0.730 6,
0.188 4]

Fig.4

Radar chart of special template category"

[1] CORONA E, ALENYA G, GABAS A, et al. Active garment recognition and target grasping point detection using deep learning[J]. Pattern Recognition, 2018,74(2):629-641.
[2] APEAGYEI P R. Application of 3D body scanning technology to human measurement for clothing fit[J]. International Journal of Digital Content Technology & Its Applications, 2010,4(7):58-68.
[3] MENG Y, MOK P Y, JIN X. Computer aided clothing pattern design with 3D editing and pattern alteration[J]. Computer Aided Design, 2012,44(8):721-734.
[4] 冀艳波, 张睿, 应柏安. 男西装工业生产用服装样板改进分析[J]. 西安工程大学学报, 2008,22(5):565-568.
JI Yanbo, ZHANG Rui, YING Boan. Analysis of the improved industry production pattern of the man suit[J]. Journal of Xi'an Polytechnic University, 2008,22(5):565-568.
[5] 张伶俐, 张皋鹏. 应用MatLab的服装纸样参数化平面制版[J]. 纺织学报, 2019,40(1):130-135.
ZHANG Linli, ZHANG Gaopeng. Parametric flat pattern design for clothing based on MatLab[J]. Journal of Textile Research, 2019,40(1):130-135.
[6] 朱伟明, 谢琴, 彭卉. 男西服数字化智能化量身定制系统研发[J]. 纺织学报, 2017,38(04):151-157.
ZHU Weiming, XIE Qin, PENG Hui. Digitalize and intelligentize customization system of men's suit[J]. Journal of Textile Research, 2017,38(04):151-157.
[7] 彭磊, 谢红, 邹奇芝. 基于量身定制特体女装原型样板的生成[J]. 纺织学报, 2011,32(4):101-105.
PENG Lei, XIE Hong, ZOU Qizhi. Generation of women's basic patterns of special body forms based on made to measure[J]. Journal of Textile Research, 2011,32(4):101-105.
[8] LIU K, WANG J, KAMALHA E, et al. Construction of a prediction model for body dimensions used in garment pattern making based on anthropometric data learning[J]. The Journal of The Textile Institute, 2017,108(12):2107-2114.
[9] 刘为敏, 谢红. BP神经网络下的智能化合体服装样板生成[J]. 纺织学报, 2018,39(7):116-121.
LIU Weimin, XIE Hong. Generation of intelligent fitting pattern based on BP neural network[J]. Journal of Textile Research, 2018,39(7):116-121.
[10] PENG S, LIU Z W, The comprehensive assessment of power quality based on attribute recognition theory and AHP algorithm[J]. Advanced Materials Research, 2014, 1044-1045:515-522.
[11] PUNIASINDHU S, NEHRAV, LUTHRA S. Recognition and prioritization of challenges in growth of solar energy using analytical hierarchy process: Indian outlook[J]. Energy, 2016,100(4):332-348.
[12] ZHAO J, JIN J, ZHU J, et al. Water resources risk assessment model based on the subjective and objective Combination weighting methods[J]. Water Resources Management, 2016,30(9):3027-3042.
[13] SAATY T L, VARGASL G. An innovative orders-of-magnitude approach to AHP-based mutli-criteria decision making: prioritizing divergent intangible humane acts[J]. European Journal of Operational Research, 2011,214(3):703-715.
[14] 郑唯唯, 凌晓静, 杨萍. 基于层次分析法的多指标灰靶决策模型[J]. 纺织高校基础科学学报, 2013(4):463-467.
ZHENG Weiwei, LING Xiaojing, YANG Ping. The multi-attribute grey target decision-making model based on analytic hierarchy process[J]. Basic Sciences Journal of Textile Universities, 2013 (4):463-467.
[15] 陈明月, 杨青, 高琼琼. 层次分析法在本科教学评估中的应用研究[J]. 西安工程大学学报, 2010,24(1):106-110.
CHEN Mingyue, YANG Qing, GAO Qiongqiong. Application of AHP in the undergraduate education evaluate[J]. Journal of Xi'an Polytechnic University, 2010,24(1):106-110.
[16] OKABE K, KUROKAWA T. Silhouette analysis and categorization of body shape changes in Japanese girls during periods of growth[J]. Japanese Journal of Ergonomics, 2010,41(1):17-23.
[17] 齐静, 李毅, 张欣. 我国西部地区青年男性体型描述与体型分类研究[J]. 纺织学报, 2010,31(5):107-111.
QI Jing, LI Yi, ZHANG Xin. Description and classification of young men's body type in the west China[J]. Journal of Textile Research, 2010,31(5):107-111.
[18] 庹武, 郑攀, 常亭亭, 等. 基于层次分析法的服装裁剪分床影响因素[J]. 纺织学报, 2013,34(4):148-152.
TUO Wu, ZHENG Pan, CHANG Tingting, et al. Analysis of factors affecting cutting scheme based on analytical hierarchy process[J]. Journal of Textile Research, 2013,34(4):148-152.
[19] ZHANG J, WANG C M, LIU L, et al. Investigation of carbon dioxide emission in China by primary component analysis[J]. Science of the Total Environment, 2014,472(2):239-247.
[20] WANG R W, YAN J L, WU X Y, et al. Automatic Identification of lyocell and cotton fibers using cluster Analysis[J]. Textile Research Journal, 2010,80(13):1330-1334.
[1] . Comprehensive evaluation model of apparel retailing service quality perception under C2C environment [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(08): 164-170.
[2] . Waist hip somatotype and classification of young women in Northeast China [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(04): 106-110.
[3] . Optimization design of multi-light source for foreign fiber detection based on clustering neural network [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(10): 104-112.
[4] . Classification of body shape based on longitudinal section curve [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(06): 86-91.
[5] . Evaluation system and model of consumer perceived service quality in clothing stores [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(06): 136-142.
[6] . Influence factors of clothing brand image and weights [J]. Journal of Textile Research, 2016, 37(4): 148-152.
[7] . Analysis of influencing factors of clothing fabric on electromagnetic shielding performance based on factor analysis [J]. Journal of Textile Research, 2016, 37(2): 149-154.
[8] . Consumers decision mechanisms on apparel online retail channels [J]. JOURNAL OF TEXTILE RESEARCH, 2016, 37(12): 146-152.
[9] . Sensibility assessment of spring and summer shirt yarn-dyed fabrics [J]. JOURNAL OF TEXTILE RESEARCH, 2016, 37(08): 59-64.
[10] . Evaluation and analysis of perceptual images of clothing fabrics [J]. Journal of Textile Research, 2015, 36(03): 99-104.
[11] Juan-Feng JIN Jie SUN. Research on subdividing of young female’s hip shapes based on 3-D body measurement [J]. JOURNAL OF TEXTILE RESEARCH, 2013, 34(9): 108-0.
[12] . Empirical analysis of effect of environmental regulation on export of China’s textile and garment [J]. JOURNAL OF TEXTILE RESEARCH, 2013, 34(6): 107-112.
[13] . Body classification of preschool girls from the lower region of the Yangtze River [J]. JOURNAL OF TEXTILE RESEARCH, 2013, 34(4): 111-116.
[14] . Comprehensive evaluation of properties of new regenerated cellulose fiber yarns [J]. JOURNAL OF TEXTILE RESEARCH, 2013, 34(3): 35-39.
[15] . Analysis on style of multi-component blended fabrics based on clustering method [J]. JOURNAL OF TEXTILE RESEARCH, 2012, 33(9): 50-54.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!