Journal of Textile Research ›› 2019, Vol. 40 ›› Issue (05): 113-118.doi: 10.13475/j.fzxb.20180608606

• Apparel Engineering • Previous Articles     Next Articles

Typical cross section silhouette analysis and interval prediction model construction of shorts

LI Tao1, DU Lei1,2, SUN Jie1, ZHANG Yijie1, ZOU Fengyuan1,2()   

  1. 1. Fashion College, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
    2. Clothing Engineering Research Center of Zhejiang Province, Zhejiang Sci-Tech University,Hangzhou, Zhejiang 310018, China
  • Received:2018-06-29 Revised:2018-11-21 Online:2019-05-15 Published:2019-05-21
  • Contact: ZOU Fengyuan E-mail:zfy166@zstu.edu.cn

Abstract:

In order to explore the influence of ease allowance on the shorts silhouette, the waist, hip and other typical cross sections which closely related to the shorts shape were selected as the research object. [TC] 2 3-D scanner was adopted to collect point cloud data of typical section, and the curve was fitted by cerebellar model articulation controller (CMAC) neural network. The minimum enclosing rectangle, thickness to width ratio and the interval were used to characterize the cross section silhouette. The prediction model of interval and ease allowance was established by regression analysis. The results show that negative correlation exists between the ease allowances and the thickness to width ratio of the hip, thigh and leg opening. The interval of hip and thigh accumulates mainly on both sides and back middle part, resulting in the shape of the cross section is gradually flattening. Upon two paired samples T examination, no significant difference exists between the predicted values and actual measured results. The interval prediction model has a good fit, which can provide reference for establishing the relationship between human body data, cross section silhouette and 3-D simulation.

Key words: shorts, ease allowance, silhouette, cerebellar model articulation controller neural network, interval

CLC Number: 

  • TS941.17

Fig.1

Style of sample shorts. (a) Front; (b) Back"

Tab.1

Size specification of sample shorts cm"

样本 裤长 立裆 腰围 臀围 裤口围 腰头
人台 68 90 49
样裤1 36 24.5 70 96 51 3
样裤2 36 24.5 71 98 52 3
样裤3 36 24.5 72 100 53 3
样裤4 36 24.5 73 102 54 3

Fig.2

Structure of CMAC neural network"

Fig.3

Silhouette of different ease allowance. (a) Minimum enclosing rectangle; (b) Ratio of thickness to width"

Tab.2

Correlation analysis of silhouette and ease allowance"

特征
截面
廓形面积与松量 廓形形状与松量
Pearson
相关系数
显著性
(双侧)
Pearson
相关系数
显著性
(双侧)
腰围 0.149 0.851 -0.350 0.650
臀围 0.942 0.058 -0.974* 0.026
裆围 0.978* 0.022 -0.967* 0.033
裤口围 0.893 0.107 -0.976* 0.024

Tab.3

Regression analysis of thickness, width and ease allowance of hip cross section"

模型 非标准化系数 标准系数 t Sig. B的95.0%置信区间
B 标准误差 试用版 下限 上限
常量 24.233 0.274 88.286 0.000 23.052 25.414
自变量:松量 0.042 0.030 0.711 1.432 0.289 -0.085 0.170
因变量:厚度
常量 30.172 1.064 28.355 0.002 25.593 34.750
自变量:松量 0.507 0.115 0.952 4.412 0.048 0.013 1.000
因变量:宽度

Fig.4

Intervals of different ease allowance. (a) Waist; (b) Hip; (c) Thigh; (d) Leg opening"

Tab.4

Regression equation of interval"

极角/(°) 回归预测方程 R2
-90 y=-0.239x2+4.183x+0.785 0.976
-70 y=0.008x3-0.049x2+6.800 0.912
-30 y=0.255x2-3.48x+15.234 0.915
0 y=0.032x3-4.989x+36.468 0.957
20 y=0.008x3-0.016x2+4.578 0.991
50 y=0.409x2-6.538x+30.977 0.995
80 y=0.104x2-2.769x+18.438 1.000

Tab.5

Results of two paired samples T test between predicted values and actual values of shorts interval"

配对
样本
极角/
(°)
成分差分 Sig.
(双侧)
均值 标准差 标准误
预测值-
实际值
-90 0.038 0.180 0.09 0.703
-70 -0.218 1.002 0.501 0.693
-30 -0.033 0.9498 0.4749 0.949
0 0.3283 1.84 0.9201 0.745
20 -0.241 0.4938 0.2469 0.399
50 -0.043 0.2059 0.103 0.701
80 -0.005 0.0035 0.017 0.062
[1] LAGE A, ANCUTIENE K. Virtual try-on technologies in the clothing industry: part 1: investigation of distance ease between body and garment[J]. The Journal of The Textile Institute, 2017,108(10):1-7.
[2] XU J H, CHEN X F, ZHANG W B. A study on area ease distribution between body and garment[J]. Journal of Fiber Bioengineering and Informatics, 2009,2(2):101-107.
[3] THOMASSEY S, BRUNIANUX P. A template of ease allowance for garment based on a 3D reverse methodology[J]. International Journal of Industrial Ergonomics, 2013,43:406-416.
[4] 刘正, 李基拓, 陆国栋, 等. 着装间隙量空间形态分布研究及其应用研究[J]. 计算机辅助设计与图形学学报, 2012,24(10):1294-1301.
LIU Zheng, LI Jituo, LU Guodong, et al. Review on 3D allocation of ease allowance and its application in garment design[J]. Journal of Computer-Aided Design & Computer Graphics, 2012,24(10):1294-1301.
[5] GU B F, SU J Q, LIU G L, et al. Pattern alteration of women's suits based on ease allowance[J]. International Journal of Clothing Science and Technology, 2015,28(2):201-215.
doi: 10.1108/IJCST-07-2015-0083
[6] WANG Z H, NG R, NETWON E. Investigation of jacket silhouette based on ease distribution[J]. Journal of Donghua University (Eng. Ed.), 2014,31(3):316-319.
[7] 张文斌. 服装结构设计[M]. 3版. 北京: 中国纺织出版社, 2007: 88-89.
ZHANG Wenbin. Pattern Making for Fashion Design[M]. 3rd ed. Beijing: China Textile & Apparel Press, 2007: 88-89.
[8] 中泽·愈. 人体与服装[M]. 袁观洛, 译. 北京: 中国纺织出版社, 2003: 12-13.
ZHONG Zeyu. The Human Body and Clothing[M]. YUAN Guanluo, Translating. Beijing: China Textile & Apparel Press, 2003: 12-13.
[9] ALBUS J S. A new approach to manipulator control: The cerebellar model articulation controller (CMAC)[J]. Journal of Dynamic Systems, Measurement, and Control, 1975,97(3):220-227.
[10] 徐少川, 刘东昆, 刘宝伟. 基于模糊算法的多小脑神经网络在混凝投药系统中的应用[J]. 计算机应用与软件, 2016,33(10):52-56.
XU Shaochuan, LIU Dongkun, LIU Baowei. Application of fuzzy algorithm-based multiple CMAC neural networks in coagulant dosing system[J]. Computer Applications and Software, 2016,33(10):52-56.
[11] 金娟, 王耀南. 基于模糊CMAC的移动机器人轨迹跟踪控制[J]. 计算机工程与应用, 2015,51(1):54-58.
JIN Juan, WANG Yaonan. Fuzzy CMAC-based trajectory tracking control for nonholonomic mobile robot[J]. Computer Engineering and Applications, 2015,51(1):54-58.
[12] GU B F, LIU G L, XU B G. Girth prediction of young female body using orthogonal silhouettes[J]. The Journal of The Textile Institute, 2016,108(1):140-146.
[1] WANG Liang, MA Xiaoguang, LI Junjun, YANG Zhou. Development and application of color change chromatography with thermochromic microcapsules [J]. Journal of Textile Research, 2020, 41(09): 88-94.
[2] CHEN Lili, LIU Chengxia. Effect of fabrics and moving speed on bustline, waistline and hipline shapes of one-piece dresses [J]. Journal of Textile Research, 2020, 41(04): 135-141.
[3] YING Xin, CHENG Bilian, LIU Zheng, ZOU Fengyuan. Influence of body surface convex angle on waist section ease [J]. Journal of Textile Research, 2019, 40(10): 152-157.
[4] XU Yunlong, XIA Fenglin. Influence of interval distance of double-needle bed warp-knitting machine on yarn demand [J]. Journal of Textile Research, 2019, 40(08): 151-156.
[5] WU Huan, DING Xiaojun, LI Qinman, DU Lei, ZOU Fengyuan. Classification of women’s trousers silhouette using convolution neural network CaffeNet model [J]. Journal of Textile Research, 2019, 40(04): 117-121.
[6] . Smart database of women’s clothing silhouette dimensions based on human body segmentation [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(01): 119-125.
[7] . Construction of radial basis function neural network models for typical cross section curve of shorts [J]. JOURNAL OF TEXTILE RESEARCH, 2015, 36(05): 83-88.
[8] . Identification and quantification of apparel silhouette [J]. JOURNAL OF TEXTILE RESEARCH, 2015, 36(05): 79-82.
[9] . Analysis on the three-dimensional constitution techniques of fabrics in dress design [J]. JOURNAL OF TEXTILE RESEARCH, 2011, 32(8): 102-106.
[10] HUANG Li;JIANG Yaming;SUI Xiuwu. Development of the normal walk state based energy consumption testing system for shorts [J]. JOURNAL OF TEXTILE RESEARCH, 2010, 31(11): 131-134.
[11] XU Jihong;ZHANG Wenbin. Influential factors of distance ease on typical cross sections [J]. JOURNAL OF TEXTILE RESEARCH, 2009, 30(05): 104-108.
[12] ZHUANG Lixin;WAN Gmingfang. Space form discrimination of clothing [J]. JOURNAL OF TEXTILE RESEARCH, 2009, 30(02): 95-99.
[13] LIU Chengxia;CHEN Weilai;LIU Meifang. Correlation of physical properties of fabric and silhouette of sleeve [J]. JOURNAL OF TEXTILE RESEARCH, 2007, 28(2): 89-91.
[14] XUE Fuping. Application analysis of the Japanese new prototype for women [J]. JOURNAL OF TEXTILE RESEARCH, 2007, 28(11): 93-96.
[15] XUE Fuping. Relationship of constitute element and silhouette about the Japanese New Cultural Women′s Wear Block [J]. JOURNAL OF TEXTILE RESEARCH, 2007, 28(10): 91-94.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!