Journal of Textile Research ›› 2019, Vol. 40 ›› Issue (07): 1-76.doi: 10.13475/j.fzxb.20180701407

• Fiber Materials •     Next Articles

Preparation of flame retardant aromatic polysulfonamide/cellulose fibers with N-methylmorpholine-N-oxide monohydrate as solvent

CHENG Tong1, YAO Yongbo2, CHEN Zhongli1, JIN Hong1, WU Kaijian1, WANG Lejun3, LIU Yining3, ZHANG Yumei1()   

  1. 1. State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620, China
    2. Jiaxing University, Jiaxing, Zhejiang 314001, China
    3. Hi-Tech Fiber Group Co., Ltd., Beijing 100020, China
  • Received:2018-07-05 Revised:2019-03-25 Online:2019-07-15 Published:2019-07-25
  • Contact: ZHANG Yumei E-mail:zhangym@dhu.edu.cn

Abstract:

In order to prepare fibers with flame retardant property and good hygroscopicity, N-methylmorpholine-N-oxide monohydrate (NMMO·H2O) was used as co-solvent to dissolve aromatic polysulfonamide (PSA) and cellulose, and the PSA/cellulose blend fibers were fabricated by dry-jet wet spinning. The structure and properties of spinning solution and blended fibers were characterized and analyzed. It is found that NMMO·H2O can dissolve PSA well, and the spinning solution is homogeneous and stable. An analogous ″sheath-core″ morphology is observed in the fibers as PSA distributed more in the sheath domain. The flame retardant property, moisture absorption ability and the mechanical property of the PSA/cellulose blended fibers are good. When the cellulose content is 30% in the blend fiber, the blend fibers still meet the requirement of flame retardant fiber standards. The tensile strength of the blend fiber is up to 2.08 cN/dtex, which shows a good tensile strength without post treatment. The moisture regain of PSA/cellulose fibers is up to 8%, and the dyeability is also improved.

Key words: aromatic polysulfonamide, cellulose, N-methylmorpholine-N-oxide monohydrate, flame retardant fiber

CLC Number: 

  • TQ341.5

Fig.1

Steady-state rheological behaviors of PSA/cellulose/NMMO·H2O solution at different temperatures"

Fig.2

Plots of estimate value and experimentalvalue of zero shear-rate viscosity for PSA/cellulose/NMMO solutions at different temperatures"

Fig.3

Change of flow activation energy with different PSA/cellulose/NMMO·H2O solutions"

Fig.4

SEM images of surface of PSA/cellulose fibers"

Fig.5

SEM images of cross-section of PSA/cellulose fibers"

Fig.6

LSCM images of PSA/cellulose fibers"

Fig.7

XRD patterns of PSA/cellulose fibers"

Tab.1

Mechanical properties of PSA/cellulose fibers"

样品
名称
线密度/
dtex
模量/
(cN·dtex-1)
断裂
伸长率/%
断裂强度/
(cN·dtex-1)
PSA 4.02 17.1 56 1.14
PC9/1 3.43 39.7 43 1.52
PC8/2 4.24 44.9 23 1.55
PC7/3 2.65 71.5 14 2.08
cellulose 4.13 88.3 16 3.40

"

样品 LOI值/% 离火自熄时间/s 回潮率/%
PSA 30.0 <1 5.9
PC9/1 28.7 <1 7.4
PC8/2 27.6 <2 7.7
PC7/3 26.6 <5 8.0
cellulose 18.0 不自熄 10.0

Fig.8

Dyeability of PSA/cellulose fibers"

[1] 于金超, 杨春雷, 陈晟辉 , 等. 聚芳砜酰胺纤维的研究进展[J]. 产业用纺织品, 2014,32(12):1-8.
YU Jinchao, YANG Chunlei, CHEN Shenghui , et al. Progress of aromatic polysulfonamides fiber[J]. Technical Textiles, 2014,32(12):1-8.
[2] 班燕, 张玉华, 任加荣 . 芳砜纶在耐高温滤料中的应用[J]. 产业用纺织品, 2006,24(12):33-36.
BAN Yan, ZHANG Yuhua, REN Jiarong . The application of polysulfonamide fiber in high temperature resistant filtration material[J]. Technical Textiles, 2006,24(12):33-36.
[3] 汪晓峰, 张玉华 . 芳砜纶的性能及其应用[J]. 纺织导报, 2005(1):18-20.
WANG Xiaofeng, ZHANG Yuhua . Properties and applications of polysulfonamide fiber[J]. China Textile Leader, 2005(1):18-20.
[4] STUHIMANN I, 王宗伟 . 芳砜纶(PSA)在阻燃和防火纺织品上的应用[J]. 国际纺织导报, 2009,37(3):64-64.
STUHIMANN I, WANG Zongwei . Tanlon PSA fibers for flame and fire resistant textiles[J]. Melliand China, 2009,37(3):64-64.
[5] 彭浩凯, 郑帼 . 氧气等离子体处理对芳砜纶纤维表面性能的影响[J]. 高分子材料科学与工程, 2015,31(6):122-125.
PENG Haokai, ZHENG Guo . Effect of oxygen plasma treatment on surface modification of polysulfonamide fiber[J]. Polymeric Materials Science and Engineering, 2015,31(6):122-125.
[6] 李旭明, 曹婵珍, 陈桂云 , 等. 等离子体处理对原棉织物亲水性的影响[J]. 纺织学报, 2011,32(12):24-27.
LI Xuming, CAO Chanzhen, CHEN Guiyun , et al. Influence of plasma treatment on hydrophilicity of raw cotton fabrics[J]. Journal of Textile Research, 2011,32(12):24-27.
[7] 陈志军, 黄年华, 张泽辉 , 等. 紫外光引发丙烯酰胺接枝改性棉织物亲水性的研究[J]. 染整技术, 2012,34(1):1-4.
CHEN Zhijun, HUANG Nianhua, ZHANG Zehui . Study on the hydrophilicity of acrylamide grafting modified cotton fabric initiated by ultraviolet light[J]. Textile Dyeing and Finishing Journal, 2012,34(1):1-4.
[8] NDLOVU L N, SIDDIQUI Q, OMOLLO E , et al. Physical properties of plain single jersey-knitted fabrics made from blended and core-spun polysulfonamide/cotton yarns[J]. Textile Research Journal, 2015,85(3):262-271.
[9] 吴万涛 . 聚芳砜酰胺纺丝工艺与纤维结构性能研究[D]. 上海:东华大学, 2010: 28-50.
WU Wantao . Relationship between spinning technology and structure property of polysulfonamide fiber[D]. Shanghai: Donghua University, 2010: 28-50.
[10] WU K, YAO Y, YU J , et al. Cellulose/aromatic polysulfonamide blended fibers with improved proper-ties[J]. Cellulose, 2017,24(8):1-10.
[11] WU K, YU J, YANG J , et al. Properties and phase morphogy of cellulose/aromatic polysulfonamide alloy fibers regulated by the viscosity ratio of solution[J]. Cellulose, 2017(12):1-12.
[12] GOLOVA L K, MAKAROV I S, MATUKHINA E V , et al. Solutions of cellulose and its blends with synthetic polymers in N-methylmorpholine-N-oxide: preparation, phase state, structure, and properties[J]. Polymer Science, 2010,52(11):1209-1219.
[13] ONISHI H, MACHIDA Y . Biodegradation and distribution of water-soluble chitosan in mice[J]. Biomaterials, 1999,20(2):175-182.
doi: 10.1016/s0142-9612(98)00159-8 pmid: 10022787
[14] ROUS M A, MANIAN A P, RODER T , et al. Fluorescent molecular probes for the characterisation of fibre structure and distribution of textile resin finishing on Lyocell[J]. Lenzinger Berichte, 2004(83):92-98.
[15] UTRACKI L A, KANIAL M R . Melt rheology of polymer blends[J]. Polymer Engineering & Science, 1982,22(22):96-114.
[16] UTRACKI L A . Melt flow of polymer blends[J]. Polymer Engineering & Science, 1983,23(11):602-609.
[17] PAN Z, CHEN Y, ZHU M , et al. The non-uniform phase structure in blend fiber: II: the migration phenomenon in melt spinning[J]. Fibers and Polymers, 2010,11(4):625-631.
[18] YU J, TIAN F, CHEN S , et al. Structure and property devel opment of aromatic copolysulfonamide fibers during wet spinning process[J]. Journal of Applied Polymer Science, 2015,132(31).
[19] 侯学妮, 周国丽, 王祥荣 . 纺织品阻燃性能测试和评价方法的分析[J]. 印染助剂, 2015(5):49-52.
HOU Xueni, ZHOU Guoli, WANG Xiangrong . Comparison and analysis of testing and evaluation method for flame-retardant performance of textiles[J]. Textile Auxiliaries, 2015(5):49-52.
[1] LU Linna, LI Yonggui, LU Qilin. One-pot synthesis and characterization of aminated cellulose nanocrystals [J]. Journal of Textile Research, 2020, 41(10): 14-19.
[2] TANG Feng, YU Houyong, ZHOU Ying, LI Yingzhan, YAO Juming, WANG Chuang, JIN Wanhui. Preparation and property of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) composite films [J]. Journal of Textile Research, 2020, 41(09): 8-15.
[3] YUAN Wei, YAO Yongbo, ZHANG Yumei, WANG Huaping. Alkaline enzyme treatment process for preparation of Lyocell cellulose pulp [J]. Journal of Textile Research, 2020, 41(07): 1-8.
[4] LIU Sijia, YU Qian, WANG Rui, KONG Xianming. Preparation of flexible Au nanoparticle decorated regenerated regenerated cellulose fiber compound and quickly detection of Nile Blue [J]. Journal of Textile Research, 2020, 41(07): 23-28.
[5] LIU Yanchun, BAI Gang. Application of berberine in polyacrylonitrile / cellulose acetate composite fiber dyeing [J]. Journal of Textile Research, 2020, 41(05): 94-98.
[6] WANG Shixian, JIANG Shuai, LI Mengmeng, LIU Lifang, ZHANG Li. Preparation and characterization of nanocellulose aerogel modified by silane coupling agent [J]. Journal of Textile Research, 2020, 41(03): 33-38.
[7] DANG Danyang, CUI Lingyan, WANG Liang, LIU Yong. Preparation and properties of cellulose nanofiber / montmorillonite composite aerogels [J]. Journal of Textile Research, 2020, 41(02): 1-6.
[8] CHEN Dongzhi, YANG Xiaogang, CHEN Yanxia, LIU Lin, CHEN Bin, . Study on cellulose-based flocculant from flax yarn waste and its flocculation performance in treating industrial wastewater [J]. Journal of Textile Research, 2020, 41(01): 88-95.
[9] LI Zhenqun, XU Duo, WEI Chunyan, QIAN Yongfang, LÜ Lihua. Preparation of cotton stalk bast cellulose / graphene oxide fiber and its mechanical properties and adsorption capacity [J]. Journal of Textile Research, 2020, 41(01): 15-20.
[10] WU Jiajun, QIN Xiaohong. Preparation and characterization of cellulose acetate sub-micro fiber from burley tobacco stalk pulp [J]. Journal of Textile Research, 2019, 40(12): 1-8.
[11] XU Chunxia, JIANG Shuai, HAN Fuyi, XU Fang, LIU Lifang. Preparation of cellulose nanofibrils aerogel and its adsorption of methylene blue [J]. Journal of Textile Research, 2019, 40(10): 20-25.
[12] .

Structure and properties of keratin film modified by carboxymethyl cellulose sodium [J]. Journal of Textile Research, 2019, 40(06): 14-19.

[13] . Preparationof porphyrin grafted bacterial cellulose and photodynamic antimicrobial property thereof [J]. Journal of Textile Research, 2018, 39(11): 20-26.
[14] . Dissolution behavior and mechanism of hydroxyethyl cellulose with low molar substitution in alkali solvent [J]. Journal of Textile Research, 2018, 39(10): 22-27.
[15] . Influence of drawing ratio distribution on morphology of cellulose/silk fibroin blend fiber [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(06): 13-18.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!