Journal of Textile Research ›› 2019, Vol. 40 ›› Issue (11): 125-130.doi: 10.13475/j.fzxb.20180707306

• Dyeing and Finishing & Chemicals • Previous Articles     Next Articles

Preparation and antistatic property of graphene oxide grafted polypropylene nonwoven fabric

MIAO Miao, WANG Xiaoxu, WANG Ying, LÜ Lihua, WEI Chunyan()   

  1. College of Textile and Materials Engineering, Dalian Polytechnic University, Dalian, Liaoning 116034, China
  • Received:2018-07-26 Revised:2019-06-28 Online:2019-11-15 Published:2019-11-26
  • Contact: WEI Chunyan E-mail:weicy@dlpu.edu.cn

Abstract:

In order to improve the antistatic property of polypropylene nonwoven fabric, the process parameters of grafting graphene oxide on polypropylene nonwoven fabric were optimized by response surface methodology with graphene oxide as grafting monomer and glacial acetic acid as catalyst. The influences of graphene oxide concentration, catalyst concentration and grafting temperature on the grafting rate were investigated. Fabric friction electrostatic tester, surface tension tester, scanning electron microscope and Fourier transform infrared spectroscopy were adopted to test and characterize the nonwoven fabric. The optimal process parameters are: graphene oxide concentration of 17.06 g/L, glacial acetic acid concentration of 0.031 mol/L and temperature of 70.60 ℃, at this time the graft ratio is 22.3%. The results show that the friction voltage of polypropylene nonwoven fabric after grafting is 1 094 V, and compared with the original fabric, the contact angle of polypropylene nonwoven fabric after grafting is 76.9°. The grafted nonwoven fabric is rougher than the original fabric and obviously adhered with a layer of material; and the grafted nonwoven fabric shows new peaks at 1 621, 1 385 and 1 117 cm-1, proving the existence of graphene oxide.

Key words: response surface analysis, graphene oxide, polypropylene nonwoven fabric, contact angle, antistatic property

CLC Number: 

  • TS174.3

Tab.1

Experimental factors and levels of encoding table of polypropylene grafted graphene oxide"

因素 编码
记号
基准
水平(0)
变化
间距
上水平
(+1)
下水平
(-1)
A X1 17 1 18 16
B X2 0.03 0.01 0.04 0.02
C X3 70 20 90 50

Tab.2

Experimental design scheme and results of polypropylene grafted graphene oxide"

实验序号 X1 X2 X3 接枝率Y/%
1 0 0 0 22.35
2 1 -1 0 19.53
3 1 1 0 20.67
4 -1 1 0 18.24
5 0 0 0 21.78
6 -1 -1 0 16.14
7 0 0 0 22.59
8 1 0 -1 18.45
9 -1 0 -1 17.32
10 0 -1 1 16.98
11 0 1 -1 18.24
12 0 0 0 22.30
13 -1 0 1 17.63
14 1 0 1 19.32
15 0 0 0 22.03
16 0 -1 -1 15.39
17 0 1 1 18.60

Tab.3

Variance analysis of polypropylene grafted graphene oxide"

来源 平方和 自由度 均值 F P
模型 83.690 9 9.300 36.62 <0.000 1
X1 9.330 1 9.330 36.74 0.000 5
X2 7.430 1 7.430 29.26 0.001 0
X3 1.220 1 1.220 4.82 0.064 1
X1X2 0.230 1 0.230 0.91 0.372 6
X1X3 0.078 1 0.078 0.31 0.595 8
X2X3 0.380 1 0.380 1.49 0.261 8
X12 7.60 1 7.600 29.94 0.000 9
X22 20.770 1 20.770 81.81 <0.000 1
X32 30.380 1 30.380 119.64 <0.000 1
残差 1.780 7 0.250
失拟项 1.390 3 0.460 4.75 0.083 1
误差 0.390 4 0.097
总和 85.470 16
判定系数 0.979 2
修正判定系数 0.952 5

Fig.1

Contour (a) and response surface (b) graph of graphene oxide and catalyst"

Fig.2

Contour (a) and response surface (b) graph of graphene oxide and temperature"

Fig.3

Contour (a) and response surface (b) graph of catalyst and temperature"

Fig.4

Influence of content of GO on grafting rate"

Fig.5

Influence of content of catalyst on grafting rate"

Fig.6

Influence of temperature on grafting rate"

Fig.7

SEM image of PP nonwoven fabric before (a) and after(b) grafting GO(×1 000)"

Fig.8

FT-IR spectra of PP and PP-g-GO non-woven"

[1] TSOU C H, YAO W H, HUNG W S, et al. Innovative plasma process of grafting methyl diallyl ammonium salt onto polypropylene to impart antibacterial and hydrophilic surface properties[J]. Industrial & Engineering Chemistry Research, 2018,57(7):2537-2545.
[2] 许永杉, 吴敏, 葛明桥. 壳聚糖接枝聚合物的制备及其在聚丙烯非织造布上的应用[J]. 纺织学报, 2015,36(9):70-74.
XU Yongbin, WU Min, GE Mingqiao. Graft of chitosan and its application in polypropylene non-woven fabric[J]. Journal of Textile Research, 2015,36(9):70-74.
[3] LEE T W, JEONG Y G. Enhanced electrical conductivity, mechanical modulus, and thermal stability of immiscible polylactide/polypropylene blends by the selective localization of multi-walled carbon nanotubes[J]. Composites Science & Technology, 2014,103:78-84.
[4] LUO W, ZHANG B, ZOU H, et al. Enhanced interfacial adhesion between polypropylene and carbon fiber by graphene oxide/polyethyleneimine coating[J]. Journal of Industrial & Engineering Chemistry, 2017,51:1-10.
[5] BALART J, FOMBUENA V, BORONAT T, et al. Surface modification of polypropylene substrates by UV photografting of methyl methacrylate (MMA) for improved surface wettability[J]. Journal of Materials Science, 2012,47(5):2375-2383.
[6] CHUNG T C, LEE S H. New hydrophilic polypropylene membranes: fabrication and evaluation[J]. Journal of Applied Polymer Science, 2015,64(3):567-575.
[7] WANG C C, YANG F L, LIU L F, et al. Hydrophilic and antibacterial properties of polyvinyl alcohol/4-vinylpyridine graft polymer modified polypropylene non-woven fabric membranes[J]. Journal of Membrane Science, 2009,345(1):223-232.
[8] YANG Y F, LI Y, LI Q L, et al. Surface hydrophilization of microporous polypropylene membrane by grafting zwitterionic polymer for anti-biofouling[J]. Journal of Membrane Science, 2010,362(1):255-264.
doi: 10.1016/j.memsci.2010.06.048
[9] 苗苗, 许多, 鹿娜, 等. 氧化石墨烯对丙纶非织造布抗静电改性研究[J]. 产业用纺织品, 2017(11):39-43.
MIAO Miao, XU Duo, LU Na, et al. Study on antistatic modification of polypropylene non-woven fabric by using graphene oxide[J]. Technical Textiles, 2017(11):39-43.
[10] 李韩博, 杨明顺, 李言, 等. 响应曲面法在SPIF表面粗糙度预测及多目标优化中的应用[J]. 机械科学与技术, 2017,36(12):1896-1905.
LI Hanbo, YANG Mingshun, LI Yan, et al. Application of response surface methodology in SPF surface roughness prediction and multi-objective optimization[J]. Mechanical Science and Technology, 2017,36(12):1896-1905.
[11] 魏俊富, 王菲菲, 周翔宇, 等. 紫外辐照法制备羧基化PP非织造布及其对壬基酚聚氧乙烯醚的吸附[J]. 天津工业大学学报, 2017,36(6):28-32.
WEI Junfu, WANG Feifei, ZHOU Xiangyu, et al. Preparation of carboxylated PP nonwovens by UV irradiation and their adsorption of nonylphenol polyoxyethylene ether[J]. Journal of Tianjin Polytechnic University, 2017,36(6):28-32.
[12] XIN Z, YAN S, DING J, et al. Surface modification of polypropylene nonwoven fabrics via covalent immobilization of nonionic sugar-based surfactants[J]. Applied Surface Science, 2014,300(3):8-15.
[13] 肖东升, 郑玉婴, 欧忠星. 功能化石墨烯/聚乙烯复合材料薄膜的制备及表征[J]. 功能材料, 2017,48(2):2221-2225.
XIAO Dongsheng, ZHENG Yuying, OU Zhongxing. Preparation and characterization of functionalized graphene/polyethylene composite films[J]. Functional Materials, 2017,48(2):2221-2225.
[1] LI Liang, LIU Jingfang, HU Zedong, GENG Changjun, LIU Rangtong. Graphene oxide loading on polyester fabrics and antistatic properties [J]. Journal of Textile Research, 2020, 41(09): 102-107.
[2] ZHAO Zhiqi, LI Qiujin, SUN Yuejing, GONG Jixian, LI Zheng, ZHANG Jianfei. Application of magnetic-graphene oxide / poly(allylamine hydrochloride) microcapsules for adsorption of dyes [J]. Journal of Textile Research, 2020, 41(07): 109-116.
[3] WANG Shubo, QIN Xiangpu, SHI Lei, ZHUANG Xupin, LI Zhenhuan. Preparation and properties of proton exchange membrane made from graphene oxide quantum dots / polyacrylonitrile nanofiber composites [J]. Journal of Textile Research, 2020, 41(06): 8-13.
[4] LI Liping, WU Daoyi, ZHAN Yikai, HE Min. Review on carbon fiber surface modification using electrophoretic deposition of carbon nanotubes and graphene oxide [J]. Journal of Textile Research, 2020, 41(06): 168-173.
[5] WANG Jiankun, JIANG Xiaodong, GUO Jing, YANG Lianhe. Research progress of functionalized graphene oxide adsorption materials [J]. Journal of Textile Research, 2020, 41(04): 167-173.
[6] MA Junzhi, WANG Dong, FU Shaohai. Preparation and properties of flame-retardant viscose fiber / dithiopyrophosphate incorporated with graphene oxide [J]. Journal of Textile Research, 2020, 41(03): 15-19.
[7] LUO Jiani, LI Lijun, ZHANG Xiaosi, ZOU Hantao, LIU Xueting. Modification of activated carbon fiber using graphene oxide doped titanium dioxide [J]. Journal of Textile Research, 2020, 41(01): 8-14.
[8] YI Ling, ZHANG He, FU Xin, LI Wen. Preparation and far-infrared emission performance of graphene based zirconium / titanium composites modified cotton fabrics [J]. Journal of Textile Research, 2020, 41(01): 102-109.
[9] LI Zhenqun, XU Duo, WEI Chunyan, QIAN Yongfang, LÜ Lihua. Preparation of cotton stalk bast cellulose / graphene oxide fiber and its mechanical properties and adsorption capacity [J]. Journal of Textile Research, 2020, 41(01): 15-20.
[10] CHEN Ying, ZHOU Shuang, WEI Tianjing, FANG Haoxia, LI Yufei. Preparation and properties of polypyrrole composite fabric by soft template process [J]. Journal of Textile Research, 2019, 40(12): 93-97.
[11] GAO Jing, ZHANG Jun, ZHAO Zeyang, LI Wandi, WANG Jiajun, WANG Lu. Antibacterial durability and wearability of polyester / cotton fabric modified collaboratively by graphene oxide and TiO2 / SiO2 [J]. Journal of Textile Research, 2019, 40(10): 120-126.
[12] LIU Jian, MAO Jinlu, PENG Li, CAI Lingyun, ZHENG Xuming, ZHANG Fushan. Performance and regulation of hydrophilic oil agent for polyethylene-polypropylene nonwoven fabrics [J]. Journal of Textile Research, 2019, 40(09): 114-121.
[13] GAO Jing, WANG Lu. Influence of pretreatment process on superhydrophobic modification of wool / polyester fabric [J]. Journal of Textile Research, 2019, 40(09): 91-96.
[14] . Influence of graphene oxide / polyaniline functional film on electromagnetic shielding property of cotton fabrics [J]. Journal of Textile Research, 2019, 40(08): 109-123.
[15] . Antistatic properties of UV-reduced graphene oxide acrylic fabrics [J]. Journal of Textile Research, 2019, 40(05): 97-101.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!