Journal of Textile Research ›› 2019, Vol. 40 ›› Issue (07): 31-37.doi: 10.13475/j.fzxb.20180708107

• Textile Engineering • Previous Articles     Next Articles

Study on mixing uniformity of fibers in rotor-spun mixed yarns

DENG Qianqian, YANG Ruihua(), XU Yaya, GAO Weidong   

  1. Key Laboratory of Eco-Textiles(Jiangnan University), Ministry of Education, Wuxi, Jiangsu 214122, China
  • Received:2018-07-30 Revised:2019-03-29 Online:2019-07-15 Published:2019-07-25
  • Contact: YANG Ruihua E-mail:yangrh@jiangnan.edu.cn

Abstract:

In order to investigate the effect of fiber mixing on the degree of fiber mixing in the rotor mix cotton yarn,the radial distribution characteristics of cotton fiber with different colors in rotor spinning blended cotton yarn were analyzed by studying the cross section sample of two-component blending rotor spun cotton yarn and three-component blended rotor spun cotton yarn with different blending modes (mixed by two-slivers, by three-slivers and by roving). The Hamilton transfer index method was adopted to characterize the uniformity of the radial distribution of cotton fibers in the blended cotton yarn, and the influence of the fiber blending methods on the radial uniformity of the rotor spinning cotton yarn was discussed. The experimental results show that for the above mentioned combination modes, color fiber distribution of different mixed-color cotton yarn is uniform, and the real ratio of fiber is consistent to the designed ratio. The mixing methods have no obvious influence on the radial uniformity of the rotor spinning cotton yarns, and the three-channel rotor spinning can achieve good blending effect of the fibers.

Key words: rotor spinning, color blended yarn, cotton fiber, Hamilton transfer index, uniformity

CLC Number: 

  • TS104

Fig.1

Forming system of three-channel rotor spinning yarn"

"

原料
粗纱 1.67 2.20 2.13
条子 22.64 21.50 21.32

Tab.2

Color mixing scheme of two-component blending cotton yarn"

编号 条子配比 纤维占比/% 混合方式
n(黄)∶n(蓝)
1# 1∶5 16.78 83.22 一并
2# 1∶5 16.78 83.22 三并
3# 2∶4 33.52 66.48 一并
4# 2∶4 33.52 66.48 三并
5# 3∶3 50.21 49.79 一并
6# 3∶3 50.21 49.79 三并
7# 4∶2 66.85 33.15 一并
8# 5∶1 83.45 16.55 一并

Fig.2

Slice samples of two-component colored cotton yarn"

Tab.3

Color mixing scheme of three-component blending cotton yarn"

编号 条子配比 纤维占比/% 混合
方式
n(红)∶n(黄)∶
n(蓝)
14# 1∶1∶4 16.91 16.37 66.72 一并
15# 1∶1∶4 16.91 16.37 66.72 三并
16# 1∶2∶3 16.96 32.85 50.19 一并
17# 1∶2∶3 16.96 32.85 50.19 三并
18# 1∶3∶2 17.01 49.42 33.57 一并
19# 1∶3∶2 17.01 49.42 33.57 三并
20# 1∶4∶1 17.07 66.1 16.83 一并
21# 1∶4∶1 17.07 66.1 16.83 三并
22# 2∶1∶3 33.74 16.33 49.93 一并
23# 2∶2∶2 33.85 32.77 33.38 一并
24# 2∶3∶1 33.95 49.31 16.74 一并
25# 3∶1∶2 50.50 16.30 33.20 一并
26# 3∶2∶1 50.56 32.69 16.65 一并
27# 4∶1∶1 67.90 16.12 15.98 一并

Tab.4

Spinning parameters of two-component mixed color cotton yarn blending by two rovings"

编号 纤维占比/% 喂入速度/(m·min-1)
9# 16.78 83.22 0.51 1.41
10# 33.52 66.48 1.03 2.10
11# 50.21 49.79 1.54 1.57
12# 66.85 33.15 2.04 1.05
13# 83.45 16.55 2.55 0.52

Tab.5

Spinning parameters of three-component mixed color cotton yarn blending by three rovings"

编号 纤维占比/% 喂入速度/(m·min-1)
28# 16.91 16.37 66.72 0.52 0.50 2.11
29# 16.96 32.85 50.19 0.53 1.00 1.59
30# 17.01 49.42 33.57 0.53 1.51 1.06
31# 17.07 66.10 16.83 0.53 2.02 0.53
32# 33.74 16.33 49.93 1.05 0.50 1.58
33# 33.85 32.77 33.38 1.05 1.00 1.05
34# 33.95 49.31 16.74 1.05 1.51 0.53
35# 50.50 16.30 33.20 1.57 0.50 1.05
36# 50.56 32.69 16.65 1.57 1.00 0.53
37# 67.90 16.12 15.98 2.11 0.49 0.50

Fig.3

Slice samples of two-component roving blended cotton yarn"

Fig.4

Slice samples of three-component colored cotton yarn"

Fig.5

Slice samples of three-component roving blended cotton yarn"

Fig.6

Two-component mixed-color cotton yarn slice sample divided into concentric circles"

Tab.6

Hamilton transfer indexes for various samples of two-component blending cotton yarn"

样本编号 汉密尔顿转移指数/%
黄色纤维 蓝色纤维
1# -3.44 3.44
2# 4.41 -4.41
3# -2.46 2.46
4# -2.70 2.70
5# 1.39 -1.39
6# 1.81 -1.81
7# -4.48 4.48
8# 11.47 -11.47
9# 8.24 -8.24
10# -5.66 5.66
11# -0.85 0.85
12# -2.30 2.30
13# -5.43 5.43

Tab.7

Hamilton transfer index for various samples of three-component blending cotton yarn"

样本
编号
汉密尔顿转移指数/%
黄色纤维 蓝色纤维 红色纤维
14# 1.19 4.61 3.50
15# -0.38 5.68 -9.50
16# 0.78 0.69 -2.07
17# -6.16 -2.49 -6.60
18# -5.09 -1.62 7.35
19# -3.26 -1.69 1.23
20# -6.47 5.88 2.93
21# 1.11 -2.73 0.64
22# -5.64 4.09 -0.08
23# -6.73 3.69 3.77
24# 6.03 0.12 -7.13
25# 0.2 6.78 -5.08
26# -3.65 -7.16 6.09
27# 8.97 -2.99 -3.06
28# 5.47 -5.74 9.57
29# 0.61 -2.66 2.99
30# 11.85 -3.04 -7.86
31# -8.33 14.24 -2.92
32# 6.62 -3.47 -0.73
33# 4.03 0.60 -4.46
34# 12.10 3.84 -14.63
35# 2.33 -4.43 1.96
36# -5.79 -11.03 3.01
37# 8.98 -9.31 0.12

Fig.7

Hamilton transfer index of three-component colored cotton yarn"

Fig.8

Hamilton transfer index of two-component colored cotton yarn"

[1] 桂亚夫 . 浅谈色彩艺术与色纺技术[J]. 棉纺织技术, 2015(8):77-80.
GUI Yafu . Discussion on color art and colored spinning technology[J]. Cotton Textile Technology, 2015 ( 8):77-80.
[2] 朱丹萍, 章友鹤, 周建迪 , 等. 色纱线生产与工艺技术创新色纺纱线使用原料种类与品质要求[J]. 现代纺织技术, 2016,24(5):61-64.
ZHU Danping, ZHANG Youhe, ZHOU Jiandi , et al. Innovation of colored spun yarn production and process technology:raw material types and quality requirements of colored spun yarn[J]. Advanced Textile Technology, 2016,24(5):61-64.
[3] 卫国, 张荣庆, 姚亚咪 . 浅析色纺纱的生产实践[J]. 现代纺织技术, 2013,21(1):42-45.
WEI Guo, ZHANG Rongqing, YAO Yami . A brief analysis on production practice of colored spun yarn[J].
4 Advanced Textile Technology , 2013,21(1):42-45.
[4] 杨瑞华, 薛元, 郭明瑞 , 等. 数码转杯纺成纱原理及其纱线特点[J]. 纺织学报, 2017,38(11):32-35.
YANG Ruihua, XUE Yuan, GUO Mingrui , et al. Mechanism and characteristics of digital rotor spun yarn[J]. Journal of Textile Research, 2017,38(11):32-35.
[5] 徐亚亚, 杨瑞华, 韩瑞叶 , 等. 应用Kubelka-Munk双常数理论的数码转杯纱混色效果预测[J]. 纺织学报, 2018,39(6):36-41.
XU Yaya, YANG Ruihua, HAN Ruiye , et al. The prediction of the color mixing effect of digital rotor yarn using Kubelka-munk double constant theory[J]. Journal of Textile Research, 2018,39(6):36-41.
[6] 章友鹤, 王凡能 . 用新型纺纱技术开发色纺纱的优势及相关技术探讨[J]. 浙江纺织服装职业技术学院学报, 2013,12(4):1-5.
ZHANG Youhe, WANG Fanneng . Discussing the advantages of developing color yarn with new spinning technologies and related technologies[J]. Journal of Zhejiang Textile & Fashion College, 2013,12(4):1-5.
[7] SUBRAMANIAM V, SRINIVASAMOORTHI V R, MOHAMED A P . Effect of processing parameters on the properties of double-rove spun yarn produced on a short staple spinning system[J]. Textile Research Journal, 1989,59(12):762-767.
[8] 李梅 . 海藻纤维彩棉纤维牛奶蛋白纤维混纺纱的开发[J]. 棉纺织技术, 2009,37(8):34-37.
LI Mei . Development of alginate fibre natural colored cotton milk protein fibre blended yarn[J]. Cotton Textile Technology, 2009,37(8):34-37.
[9] 沈兰萍, 付江 . 棉与大豆蛋白纤维混纺纱纤维径向分布的探讨[J]. 棉纺织技术, 2004,32(10):8-11.
SHEN Lanping, FU Jiang . Discussion on radial distribution of cotton & soybean protein fibre blended yarn[J]. Cotton Textile Technology, 2004,32(10):8-11.
[10] 周梦岚, 王府梅 . 木棉纤维混纺纱中纤维的径向分布规律[J]. 纺织学报, 2015,36(9):18-22.
ZHOU Menglan, WANG Fumei . Fiber radial distribution rule of kapok fiber blended yarn[J]. Journal of Textile Research, 2015,36(9):18-22.
[11] 于伟东 . 纺织材料学[M]. 北京: 中国纺织出版社, 2006: 220-223.
YU Weidong. Textile Materials [M]. Beijing: China Textile & Apparel Press, 2006: 220-223.
[1] HU Wen, WANG Di, CHEN Xiaochuan, WANG Jun, LI Yong. Finite element simulation of cotton serrated ginning state based on cottonseed modeling [J]. Journal of Textile Research, 2020, 41(09): 27-32.
[2] ZHANG Mengyang, CHEN Xiaochuan, WANG Jun, LI Yong. Modeling and simulation of cotton micronaire value based on ANSYS CFX [J]. Journal of Textile Research, 2020, 41(07): 29-34.
[3] SHAO Jinxin, ZHANG Baochang, CAO Jipeng. Fiber detection and recognition technology in cotton fiber carding process based on image processing and deep learning [J]. Journal of Textile Research, 2020, 41(07): 40-46.
[4] ZHANG Huanhuan, ZHAO Yan, JING Junfeng, LI Pengfei. Yarn evenness measurement based on sub-pixel edge detection [J]. Journal of Textile Research, 2020, 41(05): 45-49.
[5] ZHANG Ge, ZHOU Jian, WANG Lei, PAN Ruru, GAO Weidong. Influencing factors for fiber color measurement by spectrophotometer [J]. Journal of Textile Research, 2020, 41(04): 72-77.
[6] YANG Hongying, HUI Zhikui, YANG Zhihui, ZHANG Jingjing, XIE Wanzi, ZHOU Jinli. Uniformity of main color-difference formulas based on Sino Color Book [J]. Journal of Textile Research, 2020, 41(02): 103-108.
[7] . Predictions of physiological reaction and skin burn of firefighter exposing to thermal radiation#br# [J]. Journal of Textile Research, 2019, 40(02): 147-152.
[8] . Effect of bypass channel on rotor-spun yarn properties in rotor spinning#br# #br# [J]. Journal of Textile Research, 2019, 40(02): 153-158.
[9] . Comparative analysis of rotor spinning machines and yarn performance between conventional and dual-feed rotor spinning#br# [J]. Journal of Textile Research, 2019, 40(02): 63-68.
[10] . Design on pressure compatibility model of evenness roll [J]. Journal of Textile Research, 2018, 39(11): 158-162.
[11] . Adsorption properties of cotton fiber functionalized by mesoporous nanoparticle for dyes [J]. Journal of Textile Research, 2018, 39(10): 93-98.
[12] . Analysis on blending effect of colored fiber in digital rotor spun yarn [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(07): 32-38.
[13] . Prediction of color blending effect of digital rotor yarn based on Kubelka-Munk double constant theory [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(06): 36-41.
[14] . Parameter optimizing of Stearns-Noechel model in color matching of cotton colored spun yarn [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(03): 31-37.
[15] . Stearns-Noechel color matching model of digital rotor spinning [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(12): 27-32.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!