Journal of Textile Research ›› 2019, Vol. 40 ›› Issue (10): 1-6.doi: 10.13475/j.fzxb.20180708806

• Fiber Materials •     Next Articles

Preparation and properties of polyacrylonitrile-based activated hollow carbon nanofibers

LI Shufeng1,2(), CHENG Bowen1,2, LUO Yongsha2, WANG Hui2, XU Jingwei2   

  1. 1. Key Laboratory of Advanced Textile Composites of Ministry of Education, Tiangong University, Tianjin 300387, China
    2. School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
  • Received:2018-07-30 Revised:2019-06-06 Online:2019-10-15 Published:2019-10-23

Abstract:

In order to prepare polyacrylonitrile (PAN) activated hollow carbon nanofibers (AHCNF) with higher porosity, the self-prepared PAN copolymers were coaxially electrospun, pre-oxidized, carbonized and activated to prepare AHCNF. The influences of the pore-forming agents on the morphology and porosity were further investigated. The results show that the prepared PAN copolymers has a lower cyclization temperature and less heat release during cyclization, facilitating the pre-oxidation. The carbonization process converses the C—O bond on the PAN surface into the C=O double band, and the activation process converts the C=O double bond into an ester group. The activated hollow carbon nanofibers prepared by adding the pore-forming agent and by adding no pore-forming agent have cross sections with an obvious hollow structure and compact fiber walls. For the activated porous hollow carbon nanofibers (p-AHCNF) prepared by adding the pore-forming agents, the BET total specific surface area increases from 55.719 m2/g to 532.639 m2/g, the pore volume increases from 0.070 cm3/g to 0.312 cm3/g, the average mesopore diameter increases from 3.408 nm to 4.309 nm, and the yields decreases from 27.14% to 9.44%.

Key words: polyacrylonitrile, activated fiber, hollow carbon nanofiber, coaxial electrospinning, porous carbon nanofiber

CLC Number: 

  • TS343

Fig.1

DSC curve of prepared PAN polymer"

Fig.2

Surface and cross-section SEM images of various PAN carbon hollow nanofibers. (a) Surface of HCNF(×3 000);(b) Surface of AHCNF(×3 000); (c) Surface of p-HCNF(×3 000); (d) Surface of p-AHCNF(×3 000);(e)Cross-section of HCNF(×25 000); (f) Cross-section of AHCNF(×10 000); (g) Cross-section of p-HCNF(×20 000);(h) Cross-section of p-AHCNF(×20 000)"

Fig.3

N2 adsorption-desorption isotherm curves(a) and mesopore size distribution (b) of AHCNF and p-ANCNF"

Tab.1

Elemental ratios of intermediate products of PAN AHCNFs%"

样品名称 C含量 O含量 N含量
预氧丝 36.35 61.85 1.80
炭化丝 72.83 27.17
活化丝 88.16 10.58 1.26

Tab.2

Peak-fitting results of various samples by XPS analysis"

名称 官能团 预氧丝 炭化丝 活化丝
峰值/
eV
半峰
宽/eV
含量/
%
峰值/
eV
半峰宽/
eV
含量/
%
峰值/
eV
半峰
宽/eV
含量/
%
碳碳单键 284.96 1.49 60.51 284.64 1.20 39.87 284.56 0.957 54.46
碳氧单键 286.49 1.57 23.30 285.54 1.99 49.54 285.40 2.19 36.68
碳氧双键 287.80 1.36 1.30 287.80 3.16 10.59 287.80 1.09 0.41
酯基 288.94 1.17 14.89 288.90 2.00 0.00 288.90 4.18 8.45

Tab.3

Yields of PAN nanofibers after various treatments"

样品 AHCNF p-AHCNF
质量/g 收率*/% 质量/g 收率*/%
原丝 4.320 0 9.205 8
预氧丝 3.970 0 91.90 2.974 8 32.31
炭化丝 1.373 6 31.80 1.121 5 12.18
活化丝 1.172 8 27.14 0.869 2 9.44
[1] PATIL S A, CHIGOME S, HÄGERHÄLL C, et al. Electrospun carbon nanofibers from polyacrylonitrile blended with activated or graphitized carbonaceous materials for improving anodic bioelectrocatalysis[J]. Bioresource Technology, 2013,132(3):121-126.
doi: 10.1016/j.biortech.2012.12.180
[2] LIU H, BAI J, WANG S, et al. The preparation of silver nanoparticles/carbon nanofibers as catalyst in the styrene epoxidation[J]. Colloids and Surfaces A: Physicochemical & Engineering Aspects, 2014,448(1):154-159.
[3] SINGH S, ASHFAQ M, SINGH R K, et al. Preparation of surfactant-mediated silver and copper nanoparticles dispersed in hierarchical carbon micro-nanofibers for antbacterial applictions[J]. New Biotechnology, 2013,30(6):656-665.
doi: 10.1016/j.nbt.2013.05.002 pmid: 23692978
[4] TENG M, QIAO J L, LI F T, et al. Electrospun mesoporous carbon nanofibers produced from phenolic resin and their use in the adsorption of large dye molecules[J]. Carbon, 2012,50(8):2877-2886.
doi: 10.1016/j.carbon.2012.02.056
[5] FENG C, KHULBE K C, MATSUURA T, et al. Preparation and characterization of electro-spun nanofiber membranes and their possible applications in water treatment[J]. Separation and Purification Technology, 2013,102:118-135.
doi: 10.1016/j.seppur.2012.09.037
[6] PARK S H, JUNG H R, LEE W J. Hollow activated carbon nanofibers prepared by electrospinning as counter electrodes for dye-sensitized solar cells[J]. Electrochimica Acta, 2013,102(21):423-428.
doi: 10.1016/j.electacta.2013.04.044
[7] AN G H, AHN H J. Activated porous carbon nanofibers using Sn segregation for high-performance electrochemical capacitors[J]. Carbon, 2013,65(6):87-96.
doi: 10.1016/j.carbon.2013.08.002
[8] HSU Y H, LAI C C, HO C L, et al. Preparation of interconnected carbon nanofibers as electrodes for supercapacitors[J]. Electrochimica Acta, 2014,127:369-376.
doi: 10.1016/j.electacta.2014.02.060
[9] GU S Y, REN J, VANCSO G J. Process optimization and empirical modeling for electrospun polyacrylonit-rile (PAN) nanofiber precursor of carbon nano-fibers[J]. European Polymer Journal, 2005,41(11):2559-2568.
doi: 10.1016/j.eurpolymj.2005.05.008
[10] NATARAJ S K, YANG K S, AMINABHAVI T M. Polyacrylonitrile-based nanofibers:a state-of-the-art review[J]. Progress in Polymer Science, 2012,37(3):487-513.
doi: 10.1016/j.progpolymsci.2011.07.001
[11] 谢应波, 张维燕, 张睿, 等. KOH与NaOH活化法所制活性炭孔结构及电化学性能的比较[J]. 炭素技术, 2008,27(2):9-14.
XIE Yingbo, ZHANG Weiyan, ZHANG Rui, et al. Comparisons of pore structure and electrochemical performances of carbons activated by KOH and NaOH[J]. Carbon Techniques, 2008,27(2):9-14.
[12] 吴丹, 汤营茂, 缪清清, 等. 电纺聚丙烯腈基活性碳纳米纤维及其亚甲基蓝吸附性能[J]. 福建师范大学学报(自然科学版), 2015,31(3):50-58.
WU Dan, TANG Yingmao, MIAO Qingqing, et al. Adsorption properties of methylene blue onto the electrospun PAN-based activated carbon nanofibers[J]. Journal of Fujian Normal University (Natural Science Edition), 2015,31(3):50-58.
[13] 海滇, 李树锋, 丁晓, 等. 高分子量聚丙烯腈基碳纳米纤维的制备[J]. 纺织学报, 2016,37(3):1-5.
HAI Dian, LI Shufeng, DING Xiao, et al. Preparation of carbon nanofiers from PAN with high molecular weight[J]. Journal of Textile Research, 2016,37(3):1-5.
doi: 10.1177/004051756703700101
[14] 李树锋, 刘高华, 谢小军, 等. 同轴静电纺丝参数对聚丙烯腈中空碳纳米纤维形态与炭化收率的影响[J]. 纺织学报, 2017,38(12):1-6.
LI Shufeng, LIU Gaohua, XIE Xiaojun, et al. Effects of coaxial electrospnning parameters on morphology and carbonization yield of polyacrylonitrile hollow carbon nanofibers[J]. Journal of Textile Research, 2017,38(12):1-6.
doi: 10.1177/004051756803800101
[15] 李树锋. 碳中空纤维微孔膜的制备[D]. 天津:天津工业大学, 2000: 50.
LI Shufeng. Preparation of the carbon hollow fiber micro-membranes[D]. Tianjin: Tianjin Polytechnic Universitiy, 2000: 50.
[16] 李左江, 贺福, 王茂章. PAN基ACF表面结构的XPS研究[J]. 炭素, 1996(1):13-17.
LI Zuojiang, HE Fu, WANG Maozhang. XPS study of the PAN-based activated carbon fibers[J]. Carbon, 1996(1):13-17.
[1] WANG Yang, CHENG Chunzu, JIANG Li′na, REN Yuanlin, GUO Yingbin. Preparation of durable flame retardant polyacrylonitrile fabrics using UV-induced photo-grafting polymerization combined with sol-gel coating [J]. Journal of Textile Research, 2020, 41(10): 107-115.
[2] DUO Yongchao, QIAN Xiaoming, ZHAO Baobao, QIAN Yao, ZOU Zhiwei. Preparation and properties of microfiber synthetic leather base [J]. Journal of Textile Research, 2020, 41(09): 81-87.
[3] WANG Shubo, QIN Xiangpu, SHI Lei, ZHUANG Xupin, LI Zhenhuan. Preparation and properties of proton exchange membrane made from graphene oxide quantum dots / polyacrylonitrile nanofiber composites [J]. Journal of Textile Research, 2020, 41(06): 8-13.
[4] JIA Lin, WANG Xixian, TAO Wenjuan, ZHANG Haixia, QIN Xiaohong. Preparation and antibacterial property of polyacrylonitrile antibacterial composite nanofiber membranes [J]. Journal of Textile Research, 2020, 41(06): 14-20.
[5] ZHANG Yimin, ZHOU Weitao, HE Jianxin, DU Shan, CHEN Xiangxiang, CUI Shizhong. Fabrication and properties of amidoxime-modified SiO2 / polyacrylonitrile composite fibrous nonwovens [J]. Journal of Textile Research, 2020, 41(05): 25-29.
[6] LIU Yanchun, BAI Gang. Application of berberine in polyacrylonitrile / cellulose acetate composite fiber dyeing [J]. Journal of Textile Research, 2020, 41(05): 94-98.
[7] ZHAO Yaqi, GUO Wenjing, DU Lingzhi, ZHAO Zhenxin, ZHAO Haipeng. Research progress of high relative molecular weight polyacrylonitrile prepared by radical initiators [J]. Journal of Textile Research, 2020, 41(04): 174-180.
[8] WU Heng, JIN Xin, WANG Wenyu, ZHU Zhengtao, LIN Tong, NIU Jiarong. Preparation and piezoelectric properties of polyacrylonitrile / sodium nitrate nanofiber membrane [J]. Journal of Textile Research, 2020, 41(03): 26-32.
[9] LI Guoqing, LI Pingping, LIU Hanlin, LI Ni. Preparation and properties of polyacrylonitrile / polyurethane transparent film [J]. Journal of Textile Research, 2020, 41(03): 20-25.
[10] LI Sijie, ZHANG Caidan. Preparation of poly(aspartic acid) based fiber hydrogel and its drug release behavior [J]. Journal of Textile Research, 2020, 41(02): 20-25.
[11] LI Fu, LIU Shuqiang, FEI Pengfei, ZHANG Man, WU Gaihong. Recent progress in differentiated polyacrylonitrile fiber and their applications in environmental purification [J]. Journal of Textile Research, 2020, 41(02): 155-164.
[12] WANG Jie, WANG Bin, DU Zongxi, LI Congju, LI Xiuyan, AN Boru. Preparation of sulfonated polyacrylonitrile nanofiber membranes and adsorption capacity for Cr(VI) and Pb(II) [J]. Journal of Textile Research, 2020, 41(01): 1-7.
[13] ZHANG Ze, XU Weijun, KANG Hongliang, XU Jian, LIU Ruigang. Thoughts on preparation technology of high performance polyacrylonitrile-based carbon fibers [J]. Journal of Textile Research, 2019, 40(12): 152-161.
[14] XIN Minyue, ZHENG Qiang, WU Jiangdan, LIANG Liefeng. Preparation of porous ZnO films by coaxial electrospinning and photocatalytic performance thereof [J]. Journal of Textile Research, 2019, 40(10): 42-47.
[15] REN Yuanlin, JIANG Li'na, HUO Tongguo, TIAN Tian. Research progress on flame retardant modification of polyacrylonitrile fiber [J]. Journal of Textile Research, 2019, 40(08): 181-188.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!