Journal of Textile Research ›› 2020, Vol. 41 ›› Issue (01): 1-7.doi: 10.13475/j.fzxb.20180710007

• Fiber Materials •     Next Articles

Preparation of sulfonated polyacrylonitrile nanofiber membranes and adsorption capacity for Cr(VI) and Pb(II)

WANG Jie1, WANG Bin1,2,3(), DU Zongxi1, LI Congju4, LI Xiuyan1, AN Boru1   

  1. 1. School of Materials Design & Engineering, Beijing Institute of Fashion Technology, Beijing 100029, China
    2. Beijing Key Laboratory of Clothing Materials R&D and Assessment, Beijing 100029, China
    3. Beijing Engineering Research Center of Textile Nanofibers, Beijing 100029, China
    4. School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
  • Received:2018-07-31 Revised:2019-10-27 Online:2020-01-15 Published:2020-01-14
  • Contact: WANG Bin E-mail:20150010@bift.edu.cn

Abstract:

In order to better adsorb Cr(VI) and Pb(II) in water and avoid secondary water pollution by the adsorpting materials, polyacrylonitrile electrospun nanofiber membrane (PAN ENM) was chemically modified by reacting with p-toluenesulfonamide through the hydrothermal method, and the modified PAN ENM with the function of adsorbing heavy metal ions was successfully obtained. The removal performance and mechanism of the modified PAN ENM for adsorbing Cr(VI) and Pb(II) were studied. The results show that well-formed modified PAN ENM can be obtained through hydrothermal reaction at 125 ℃ for 2.5 h. The adsorption behavior of the modified PAN ENM for Cr(VI) conformed to the Langmuir model and the pseudo-second-order kinetics. The equilibrium adsorption was reached in 1 h and the adsorption capacity reached 220.4 mg/g in a 50 mg/L K2Cr2O7 solution. The adsorption for Pb(II) fits well to the Freundlich model and the pseudo-second-order kinetics. The equilibrium adsorption is achieved in 1 h and the adsorption capacity is 185.6 mg/g in a 50 mg/L Pb(NO3)2 solution.

Key words: electrospinning, polyacrylonitrile, sulfamation, adsorption behavior, sewage treatment

CLC Number: 

  • TQ340.9

Fig.1

Reaction of p-toluenesulfonamide with nitrile group of PAN"

Fig.2

SEM images of sulfonated PAN ENM with different hydrothermal time (×5 000). (a) Unmodified treatment;(b) Hydrothermal time 1 h;(c) Hydrothermal time 2 h;(d) Hydrothermal time 2.5 h;(e) Hydrothermal time 3 h;(f) Hydrothermal time 4 h"

Fig.2

SEM images of sulfonated PAN ENM with different hydrothermal time (×5 000). (a) Unmodified treatment;(b) Hydrothermal time 1 h;(c) Hydrothermal time 2 h;(d) Hydrothermal time 2.5 h;(e) Hydrothermal time 3 h;(f) Hydrothermal time 4 h"

Fig.3

Diameter distribution of PAN nanofibers membrane before (a) and after (b) sulfamation"

Fig.3

Diameter distribution of PAN nanofibers membrane before (a) and after (b) sulfamation"

Fig.4

Contact angle of PAN nanofiber membrane before and after sulfamation. (a) PAN nanofiber membrane; (b) Sulfonated PAN nanofiber membrane"

Fig.4

Contact angle of PAN nanofiber membrane before and after sulfamation. (a) PAN nanofiber membrane; (b) Sulfonated PAN nanofiber membrane"

Fig.5

FT-IR spectra for sulfonate PAN ENM with different hydrothermal time"

Fig.5

FT-IR spectra for sulfonate PAN ENM with different hydrothermal time"

Fig.6

Change of adsorption performance of sulfonate PAN nanofiber membrane for Cr(VI) (a) and Pb(II) (b) with time"

Fig.6

Change of adsorption performance of sulfonate PAN nanofiber membrane for Cr(VI) (a) and Pb(II) (b) with time"

Fig.7

Fitting plots for Cr(VI) and Pb(II) by pseudo-first-order kinetics and the pseudo-second-order kinetics. (a) Kinetics fitting diagram of quasi-first-order adsorption Cr(VI); (b) Kinetics fitting diagram of quasi-secondary adsorption Cr(VI); (c) Kinetic fitting diagram of quasi first order adsorption Pb(II); (d) Kinetic fitting diagram of quasi-second order adsorption Pb(II)"

Fig.7

Fitting plots for Cr(VI) and Pb(II) by pseudo-first-order kinetics and the pseudo-second-order kinetics. (a) Kinetics fitting diagram of quasi-first-order adsorption Cr(VI); (b) Kinetics fitting diagram of quasi-secondary adsorption Cr(VI); (c) Kinetic fitting diagram of quasi first order adsorption Pb(II); (d) Kinetic fitting diagram of quasi-second order adsorption Pb(II)"

Tab.1

Adsorption kinetics of the modified PAN ENM for Cr(VI) and Pb(II)"

吸附离子 准一级动力学吸附方程 准二级动力学吸附方程
qe1/(mg·g-1) k1/min-1 R12 qe2/(mg·g-1) k2/(g·mg-1·min-1) R22
Cr(VI) 214.86 0.09 0.972 295.85 8.67×10-4 0.995
Pb(II) 175.91 0.05 0.978 248.76 2.10×10-4 0.984

Tab.1

Adsorption kinetics of the modified PAN ENM for Cr(VI) and Pb(II)"

吸附离子 准一级动力学吸附方程 准二级动力学吸附方程
qe1/(mg·g-1) k1/min-1 R12 qe2/(mg·g-1) k2/(g·mg-1·min-1) R22
Cr(VI) 214.86 0.09 0.972 295.85 8.67×10-4 0.995
Pb(II) 175.91 0.05 0.978 248.76 2.10×10-4 0.984

Fig.8

Isothermal curves of sulfonated PAN nanofiber membrane for Cr(VI) and corresponding adsorption model fitting diagrams. (a) Isothermal adsorption curve; (b) Fitting diagram of Langmuir adsorption model; (c)Fitting diagram of Freundlich adsorption model"

Fig.8

Isothermal curves of sulfonated PAN nanofiber membrane for Cr(VI) and corresponding adsorption model fitting diagrams. (a) Isothermal adsorption curve; (b) Fitting diagram of Langmuir adsorption model; (c)Fitting diagram of Freundlich adsorption model"

Fig.9

Isothermal curves of sulfonated PAN nanofiber membrane for Pb(II) and corresponding adsorption model fitting diagrams."

Fig.9

Isothermal curves of sulfonated PAN nanofiber membrane for Pb(II) and corresponding adsorption model fitting diagrams."

Fig.10

Infrared spectra of modified PAN nanofiber membrane before and after adsorption heavy metal ions"

Fig.10

Infrared spectra of modified PAN nanofiber membrane before and after adsorption heavy metal ions"

[1] MARSRANO E, FRANCIS L, GIUNCO F. Polyamide 6 nanofibrous nonwovens via electrospinning[J]. Journal of Applied Polymer Science, 2010,117(3):1754-1765.
[2] TIAN Y, WU M, LIU R, et al. Electrospun menberane of cellulose acetate for heavy mental ion adsorption in water treatment[J]. Carbohydrate Polymers, 2011,83(2):743-748.
doi: 10.1016/j.carbpol.2010.08.054
[3] HAIDER S, PARK S Y. Preparation of the electrospun chitosan nanofibers and their applications to the adsorption of Cu(II) and Pb(II) ions from an aqueous solution[J]. Journal of Membrane Science, 2009,328(1/2):90-96.
doi: 10.1016/j.memsci.2008.11.046
[4] 丁彬, 俞建勇. 静电纺丝与纳米纤维[M]. 北京: 中国纺织出版社, 2011: 3-6.
DING Bin, YU Jianyong. Electrospinning and nano-fibers[M]. Beijing: China Textile & Apparel Press, 2011: 3-6.
[5] 尹桂波, 臧传锋. 聚丙烯腈纳米纤维氨基化改性及重金属吸附性能[J]. 印染, 2017(21):36-39.
YIN Guibo, ZANG Chuanfeng. Amination modification of PAN electrospun nanofibers and their adsorption to heavy metals[J]. China Dyeing & Finishing, 2017(21):36-39.
[6] 汪滨, 张凡, 王娇娜, 等. 偕胺肟化PAN 纳米纤维膜除铬性能的研究[J]. 高分子学报, 2016(8):1105-1111.
WANG Bin, ZHANG Fan, WANG Jiaona, et al. Amidoxime-modified polyacrylonitrile nanofibers and application to Cr(VI) ions adsorption[J]. Acta Polymerca Sinica, 2016(8):1105-1111.
[7] EUTILÉRIO F C C, LANGELIHLE N D, ADEDEJI A A, et al. Modification of electrospun polyacrylonitrile nanofibers with EDTA for the removal of Cd and Cr ions from water effluents[J]. Applied Surface Science, 2016,369, 19-28.
doi: 10.1016/j.apsusc.2016.02.018
[8] ZHOU D J, DAI L B, NI H, et al. Preparation and characterization of polyphenylene sulfide-based chelating fibers[J]. Chinese Chemical Letters, 2014,25(2):221-225.
doi: 10.1016/j.cclet.2013.11.037
[9] 闫春秋. 聚丙烯腈螯合纳米纤维制备及其吸附性能探究[D]. 长春: 吉林大学, 2016: 19-22.
YAN Chunqiu. Preparation of polyacrylonitrile chelating nanofiber membrane and its adsorption performance[D]. Changchun: Jilin University, 2016: 19-22.
[10] NDAYAMBAJE G, LAATIKAINEN K, LAATIKAINEN M, et al. Adsorption of nickel (II) on polyacrylonitrile nanofiber modified with 2-(2'-pyridyl)imidazole[J]. Chemical Engineering Journal, 2016,284, 1106-1116.
doi: 10.1016/j.cej.2015.09.065
[11] 李晶, 郑红, 韩鸿萍. 聚丙烯腈螯合纤维的合成及其分离富集贵金属离子[J]. 青海大学学报(自然科学版), 2007,25(4):36-40.
LI Jing, ZHENG Hong, HAN Hongping. Synjournal and applications of new Poly(acryl-p-toluenesulfon amideamidine-p-toluenesulfonylamide) chelating fiber preconcentration and separation of trace noble metal lions from solution samples[J]. Journal of Qinghai Universi-ty (Nature Science Edition), 2007,25(4):36-40.
[12] 潘铁英, 张玉兰, 苏克曼. 波谱解析法[M].第2版. 上海: 华东理工大学出版社, 2002: 113-125.
PAN Tieying, ZHANG Yulan, SU Keman. Spectral analysis[M]. 2th ed. Shanghai: East China University of Science and Technology Press, 2002: 113-125.
[13] 张凡, 汪滨, 王娇娜, 等. AOPAN@Mg(OH)2多层次电纺纤维膜的制备及除铬性能[J]. 高等学校化学学报, 2016,37(11):2117-2124.
ZHANG Fan, WANG Bin, WANG Jiaona, et al. Preparation of hierarchically structured AOPAN@Mg(OH)2 composite nanofibrous membrane and Cr(VI)-removal capacity[J]. Chemical Journal of Chinese Universities, 2016,37(11):2117-2124.
[14] MOUEDHEN G, FEKI M, PETRIS-WERY D M, et al. Electrochemical removal of Cr(VI) from aqueous media using iron and aluminum as electrode materials: towards a better understanding of the involved phenomena[J]. Journal of Hazardous Materials, 2009,168(2):983-991.
doi: 10.1016/j.jhazmat.2009.02.117
[15] 雷忠利, 范友华, 杨红. 新型螯合纤维的制备及其动力学和热力学性质[J]. 西北大学学报(自然科学版), 2006,36(5):755-760.
LEI Zhongli, FAN Youhua, YANG Hong. A study on the synjournal and thermodynamics and kinetics of a kind of novel chelating fiber[J]. Journal of Northwest University (Nature Science Edition), 2006,36(5):755-760.
[1] GUO Xuesong, GU Jiayi, HU Jianchen, WEI Zhenzhen, ZHAO Yan. Preparation and properties of polyacrylonitrile / carboxyl styrene butadiene latex composite nanofibrous membranes [J]. Journal of Textile Research, 2021, 42(02): 34-40.
[2] CHEN Yunbo, ZHU Xiangyu, LI Xiang, YU Hong, LI Weidong, XU Hong, SUI Xiaofeng. Recent advance in preparation of thermo-regulating textiles based on phase change materials [J]. Journal of Textile Research, 2021, 42(01): 167-174.
[3] WANG He, WANG Hongjie, RUAN Fangtao, FENG Quan. Preparation and properties of carbon nanofiber electrode made from electrospun polyacrylonitrile/linear phenolic resin [J]. Journal of Textile Research, 2021, 42(01): 22-29.
[4] YANG Gang, LI Haidi, QIAO Yansha, LI Yan, WANG Lu, HE Hongbing. Preparation and characterization of polylactic acid-caprolactone/fibrinogen nanofiber based hernia mesh [J]. Journal of Textile Research, 2021, 42(01): 40-45.
[5] YANG Yuchen, QIN Xiaohong, YU Jianyong. Research progress of transforming electrospun nanofibers into functional yarns [J]. Journal of Textile Research, 2021, 42(01): 1-9.
[6] WANG Ximing, CHENG Feng, GAO Jing, WANG Lu. Effect of cross-linking modification on properties of chitosan/polyoxyethylene nanofiber membranes towards wound care [J]. Journal of Textile Research, 2020, 41(12): 31-36.
[7] ZHANG Yike, JIA Fan, GUI Cheng, JIN Rui, LI Rong. Preparation and performance of flexible sensor made from polyvinylidene fluoride/FeCl3 composite fibrous membranes [J]. Journal of Textile Research, 2020, 41(12): 13-20.
[8] SUN Qian, KAN Yan, LI Xiaoqiang, GAO Dekang. Preparation and performance of colorimetric humidity sensor using polyacrylonitrile/CoCl2 nanofibers [J]. Journal of Textile Research, 2020, 41(11): 27-33.
[9] WANG Liyuan, KANG Weimin, ZHUANG Xupin, JU Jingge, CHENG Bowen. Preparation and properties of composite proton exchange membranes based on sulfonated polyethersulfone nanofibers [J]. Journal of Textile Research, 2020, 41(11): 19-26.
[10] LI Haoyi, XU Hao, CHEN Mingjun, YANG Tao, CHEN Xiaoqing, YAN Hua, YANG Weimin. Research progress of noise reduction by nanofibers [J]. Journal of Textile Research, 2020, 41(11): 168-173.
[11] WANG Zixi, HU Yi. Preparation and energy storage of porous carbon nanofibers based on ZnCo2O4 [J]. Journal of Textile Research, 2020, 41(11): 10-18.
[12] WANG Yang, CHENG Chunzu, JIANG Li'na, REN Yuanlin, GUO Yingbin. Preparation of durable flame retardant polyacrylonitrile fabrics using UV-induced photo-grafting polymerization combined with sol-gel coating [J]. Journal of Textile Research, 2020, 41(10): 107-115.
[13] PAN Lu, CHENG Tingting, XU Lan. Preparation of polycaprolactone/polyethylene glycol nanofiber membranes with large pore sizes and its application for tissue engineering scaffold [J]. Journal of Textile Research, 2020, 41(09): 167-173.
[14] DUO Yongchao, QIAN Xiaoming, ZHAO Baobao, QIAN Yao, ZOU Zhiwei. Preparation and properties of microfiber synthetic leather base [J]. Journal of Textile Research, 2020, 41(09): 81-87.
[15] YANG Kai, ZHANG Xiaomei, JIAO Mingli, JIA Wanshun, DIAO Quan, LI Yong, ZHANG Caiyun, CAO Jian. Preparation and adsorption performance of high-ortho phenolic resin based activated carbon nanofibers [J]. Journal of Textile Research, 2020, 41(08): 1-8.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!