Journal of Textile Research ›› 2019, Vol. 40 ›› Issue (8): 80-84.doi: 10.13475/j.fzxb.20180800205

• Dyeing and Finishing & Chemicals • Previous Articles     Next Articles

Measurement and model fitting for solubility of Disperse Red 11 in supercritical CO2

HU Jinhua1, YAN Jun1(), LI Hong1, PENG Jianjun1, ZHENG Laijiu1, ZHENG Huanda1, HE Tingting2   

  1. 1. School of Textile and Material Engineering, Dalian Technology University, Dalian, Liaoning 116034, China
    2. Patent Examination Cooperation (Beijing) Center of the Patent Office, Beijing 100160, China
  • Received:2018-08-01 Revised:2019-05-28 Online:2019-08-15 Published:2019-08-16
  • Contact: YAN Jun E-mail:yanjun@dlpu.edu.cn

Abstract:

In order to realize the industrial application of supercritical carbon dioxide (CO2) dyeing, a high pressure supercritical fluid experimental device was developed independently under the conditions of temperature of 353.15-393.15 K and pressure of 16-24 MPa. The solubility of Disperse Red 11 (1,4-diamino-2-methoxyanthraquinone) in supercritical carbon dioxide was measured by a dynamic method. The experimental results were fitted by Chrastil empirical model and MST equation, and the factors affecting the solubility of disperse dyes in supercritical CO2 were discussed. The results show that the higher the pressure is, the higher the density of carbon dioxide is, the higher the solubility of Disperse Red 11 in supercritical CO2. With the increase of temperature, the solubility first increases and then decreases. The optimum process conditions of solubility of Disperse Red 11 is temperature of 383.15 K and pressure of 24 MPa. The correlation level of Chrastil empirical model is above 0.90, and the correlation level of MST equation is 0.55. Chrastil empirical model has better correlation results than MST equation.

Key words: supercritical carbon dioxide, Disperse Red 11, solubility, Chrastil empirical model, MST equation

CLC Number: 

  • TS193.21

Fig.1

Disperse Red 11 molecular formula"

Fig.2

Supercritical apparatus diagram"

Tab.1

Solubility and CO2 density of Disperse Red 11 in different supercritical dissolution temperature and pressure"

P/
MPa
T=353.15 K T=363.15 K T=373.15 K T=383.15 K T=393.15 K
y/
10-6
ρ/
(kg·m-3)
y/
10-6
ρ/
(kg·m-3)
y/
10-6
ρ/
(kg·m-3)
y/
10-6
ρ/
(kg·m-3)
y/
10-6
ρ/
(kg·m-3)
16 2.37 468.44 4.65 408.01 7.30 363.69 8.39 330.47 6.42 304.68
18 2.76 539.07 5.06 475.67 7.87 424.81 8.94 384.99 6.94 353.55
20 3.12 593.89 5.49 533.17 8.31 480.53 9.68 436.83 7.41 401.15
22 3.67 636.74 6.01 580.38 8.59 528.94 9.95 484.04 7.93 445.86
24 4.57 671.27 6.97 619.21 9.40 570.19 10.61 528.80 8.77 486.70

Fig.3

Solubility MST fitting curve"

Fig.4

Solubility Chrastil fitting curve"

Tab.2

Parameter value and fitting level"

温度/K A C R2
353.15 -6.76 0.005 0.90
363.15 -6.15 0.004 0.92
373.15 -5.72 0.003 0.95
383.15 -5.41 0.003 0.95
393.15 -5.35 0.004 0.95
[1] 张震杰, 许菲, 林春绵 , 等. 分散橙30和分散橙31在超临界CO2中的溶解度测定[J]. 高校化学工程学报, 2008,22(5):739-743.
ZHANG Zhenjie, XU Fei, LIN Chunmian , et al. Measurements of solubilities of C.I. Disperse Orange 30 and C.I. Disperse Orange 31 in supercritical carbon dioxide[J]. Journal of Chemical Engineering of Chinese Universities, 2008,22(5):739-743.
[2] 张娟, 郑来久, 闫俊 , 等. 超临界二氧化碳无水工程化染色中羊毛纤维的力学性能[J]. 纺织学报, 2017,38(2):53-58.
ZHANG Juan, ZHENG Laijiu, YAN Jun , et al. Mechanical properties of wool fibers in engineering anhydrous dyeing using supercritical carbon dioxide[J]. Journal of Textile Research, 2017,38(2):53-58.
[3] 郑环达, 郑来久 . 超临界流体染整技术研究进展[J]. 纺织学报, 2015,36(9):141-148.
ZHENG Huanda, ZHENG Laijiu . Research development of supercritical fluid dyeing and finishing technology[J]. Journal of Textile Research, 2015,36(9):141-148.
[4] 郑金花, 徐明仙, 林春绵 , 等. 分散红54在超临界CO2/乙醇中溶解度的测定与关联[J]. 浙江工业大学学报, 2011,39(4):415-419.
ZHENG Jinhua, XU Mingxian, LIN Chunmian , et al. Measurement and correlation of solubilities of C.I. Disperse Red 54 in supercritical carbon dioxide/ethanol[J]. Journal of Zhejiang University of Technology, 2011,39(4):415-419.
[5] 许菲, 郑金花, 鲁雪燕 , 等. 分散红343和分散蓝366在超临界CO2中溶解度测定和关联[J]. 浙江工业大学学报, 2009,37(1):27-31.
XU Fei, ZHENG Jinhua, LU Xueyan , et al. Measurement and correlation of the solubilities of Disperse Red 343, Disperse Blue 366 in supercritical carbon dioxide[J]. Journal of Zhejiang University of Technology, 2009,37(1):27-31.
[6] 余志成, 林鹤鸣 . 分散蓝79在超临界CO2中的溶解特性及染色行为[J]. 纺织学报, 2006,27(6):47-50.
YU Zhicheng, LIN Heming . Solubility and dyeing performance of Disperse Blue 79 in supercritical carbon dioxide[J]. Journal of Textile Research, 2006,27(6):47-50.
[7] 闫新豪, 王丹 . 利用MST和SS模型对萘在超临界CO2中溶解度模拟[J]. 化工科技, 2016,24(2):5-8.
YAN Xinhao, WANG Dan . Simulation of solubility of naphthalene in supercritical CO2 using MST and SS models[J]. Science & Technology in Chemical Industry, 2016,24(2):5-8.
[8] 刘秒, 赵虹娟, 郑来久 , 等. 染料在超临界二氧化碳中的溶解度研究进展[J]. 染整技术, 2017,39(6):1-6.
LIU Miao, ZHAO Hongjuan, ZHENG Laijiu , et al. Research progress of dyes solubility in supercritical carbon dioxide[J]. Textile Dyeing and Finishing Journal, 2017,39(6):1-6.
[9] JAVAD Fasihi, YADOLLAH Yamini, FARAHNAZ Nourmohammadian , et al. Investigations on the solubilities of some disperse azo dyes in supercritical carbon dioxide[J]. Dyes and Pigments, 2004,63(2):161-168.
doi: 10.1016/j.dyepig.2004.01.007
[10] ALWI R S, KAZUHIRO T, TATSURO T , et al. Solubility correlation of anthraquinone derivatives in supercritical carbon dioxide[C]//American Institute of Physics Conference Series. New York: AIP Publishing, 2017,1840(1):1-6.
[11] CABRAL V F, SANTOS W L F, MUNIZ E C , et al. Correlation of dye solubility in supercritical carbon dioxide[J]. Journal of Supercritical Fluids, 2007,40(2):163-169.
doi: 10.1016/j.supflu.2006.05.004
[12] DOSSANTOS J C, MAZZER H R, MACHADO G D , et al. High-pressure phase behaviour of the system (CO2+C.I. Disperse Orange 30 dye)[J]. Journal of Chemical Thermodynamics, 2012,48(2012):284-290.
doi: 10.1016/j.jct.2011.12.040
[13] YAN Jun, ZHENG Laijiu, DU Bing , et al. Dye solubility in supercritical carbon dioxide fluid[J]. Thermal Science, 2015,19(4):1311-1315.
doi: 10.2298/TSCI1504311Y
[14] LONG Jiajie, RAN Ruilong, JIANG Weide , et al. Solubility of a reactive disperse dye in supercritical carbon dioxide[J]. Coloration Technology, 2012,128(2):127-132.
doi: 10.1111/cote.2012.128.issue-2
[15] HOJJATI M, YAMINI Y, KHAJEH M , et al. Measurement and correlation of solubilities of some disperse azo dyes in supercritical carbon dioxide[J]. Journal of Chemical and Engineering Data, 2008,53(3):634-638.
doi: 10.1021/je7003534
[1] WANG Chunyi, WU Wei, WANG Jian, XU Hong, MAO Zhiping. Molecular dynamics simulation of solubility of C.I. Disperse Brown 19 in supercritical CO2 and water [J]. Journal of Textile Research, 2020, 41(09): 95-101.
[2] SHEN Yanqin, YANG Shu, WU Hailiang, WANG Zhongliang. Research progress of medium and low temperature water-soluble textile starch size [J]. Journal of Textile Research, 2019, 40(06): 142-151.
[3] QIAN Lumin, ZHANG Bin. Preparation and characterization of soluble hemostatic medical cotton gauze [J]. Journal of Textile Research, 2019, 40(05): 102-106.
[4] . Supercritical carbon dioxide extraction and bacterial resistance of flavones from apocynum venetum bast fiber [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(08): 71-76.
[5] . Synthesis and properties of water soluble quaternary ammonium cationic starch sizing materials [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(11): 73-78.
[6] . Research progress on textile finishing with assistance of supercritical carbon dioxide [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(11): 177-184.
[7] . Engineering plant adn process for dyeing of polyester bobbins in supercritical CO2 fluid [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(08): 86-90.
[8] . Research development on scouring and bleaching of flax rove in supercritical caubon dioxide [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(05): 163-169.
[9] . Mechanical properties in  wool fibers in engineering anhydrous dyeing using supercritical carbon dioxide [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(02): 53-59.
[10] . Dissolution properties of hemp fiber in lithium chloride /N, N- Dimethylacetamide [J]. JOURNAL OF TEXTILE RESEARCH, 2016, 37(11): 92-97.
[11] . Influence of graft modification on sizing properties of feather keratin [J]. JOURNAL OF TEXTILE RESEARCH, 2015, 36(08): 68-73.
[12] . Research on color difference between PLA and PET fibers dyed with disperse dyes [J]. JOURNAL OF TEXTILE RESEARCH, 2014, 35(2): 43-0.
[13] . Solubilization effect of some surfactants on C.I. Reactive Blue 221 [J]. JOURNAL OF TEXTILE RESEARCH, 2013, 34(11): 82-0.
[14] .  Application of solubility parameter theory on color change of coated polyester Fabrics caused by migration of disperse dyes [J]. JOURNAL OF TEXTILE RESEARCH, 2013, 34(1): 72-78.
[15] YAN Jing-Xue, ZHANG Rui-Yun. Influence of activation methods on waste cotton-polyester fabric recycling [J]. JOURNAL OF TEXTILE RESEARCH, 2012, 33(5): 50-55.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. JOURNAL OF TEXTILE RESEARCH, 2000, 21(05): 31 -33 .
[2] . [J]. JOURNAL OF TEXTILE RESEARCH, 1987, 8(11): 40 -41 .
[3] GONG Lifang;NI Renjie;HUANG Yu;YAO Cheng. Research on the antistatic performance of bisquaternary ammonium salt for polyester fabric[J]. JOURNAL OF TEXTILE RESEARCH, 2008, 29(5): 72 -74 .
[4] LIU Hao;CHENG Ling. Quality evaluation of knitting yarns using modified FKCM[J]. JOURNAL OF TEXTILE RESEARCH, 2009, 30(01): 37 -41 .
[5] . [J]. JOURNAL OF TEXTILE RESEARCH, 1993, 14(04): 26 -30 .
[6] . [J]. JOURNAL OF TEXTILE RESEARCH, 1983, 4(11): 52 .
[7] . [J]. JOURNAL OF TEXTILE RESEARCH, 1983, 4(12): 26 -30 .
[8] . [J]. JOURNAL OF TEXTILE RESEARCH, 1983, 4(12): 51 .
[9] Jie YU. Structure and properties of polyacrylonitrile / Ca-montmorillonite nanocomposite fiber[J]. JOURNAL OF TEXTILE RESEARCH, 2011, 32(5): 29 -32 .
[10] . [J]. JOURNAL OF TEXTILE RESEARCH, 1982, 3(01): 58 .